J. Semicond. > 2022, Volume 43 > Issue 3 > 030501

SHORT COMMUNICATION

Stabilizing black-phase CsPbI3 under over 70% humidity

Tian Tian1, §, , Meifang Yang1, §, Jianyu Yang1, Wuqiang Wu1, and Liming Ding2,

+ Author Affiliations

 Corresponding author: Tian Tian, tiant59@mail.sysu.edu.cn; Wuqiang Wu, wuwq36@mail.sysu.edu.cn; Liming Ding, ding@nanoctr.cn

DOI: 10.1088/1674-4926/43/3/030501

PDF

Turn off MathJax

Recently, all-inorganic perovskites have attracted attention due to good thermal stability[1-12]. Among them, CsPbI3 has the most desirable optical bandgap (~1.7 eV) for applications in optoelectronic devices[13-16]. In general, making black-phase CsPbI3 film requires a high-temperature annealing up to 320 °C[17, 18], which inevitably raises energy consumption. Though being made at high temperature, the resulting black-phase (α or β phase) CsPbI3 film still suffers from an undesirable phase transition under ambient conditions[19, 20]. Several strategies have been developed to lower the annealing temperature (90–100 °C)[20-26], it is still challenging to stabilize black-phase CsPbI3 under ambient condition with high humidity and without a tedious annealing process. Herein, we developed a simple crystal redissolution (CR) strategy to make stable black-phase CsPbI3 film in ambient air with high humidity and without post-annealing. 4-N,N-dimethylamino-4ʹ-Nʹ-methyl-stilbazolium tosylate (DAST) can chemically interact with CsPbI3 to reduce the formation energy of black-phase and inhibit CsPbI3 to undergo black-to-yellow phase transition.

Fig. 1(a) shows the CR approach. By using the perovskite precursor consisting of PbI2, CsI and HI, a light-yellow film was obtained in ambient air, which is due to the existence of both yellow-phase δ-CsPbI3 and PbI2, as evidenced in XRD pattern (Fig. 1(b))[22]. In contrast, by using CR-derived perovskite precursor (Fig. S1), a mirror-like black CsPbI3 film was obtained even under 70% relative humidity, which uniformly covered the entire substrate (inset in Fig. 1(c)). Compared with the control sample (Fig. 1(b)), there is no PbI2 signal (12.6°) in XRD pattern (Fig. 1(c))[27], which is due to a more direct conversion and rapid self-assembly from CsPbI3 crystals to CsPbI3 film, rather than the complicated competition among Pb2+, Cs+, I ions and solvent molecules[27, 28]. The diffraction peaks at 14.98° and 29.20° are the typical (100) and (200) planes of black-phase β-CsPbI3. Meanwhile, the absorbance of the control film sharply declined after 450 nm, while CR-derived black CsPbI3 film presents an absorption onset at 733 nm (Fig. S2), which agrees with the previous report on β-CsPbI3 film[12]. For the control film, inferior surface coverage was observed (Figs. S3(a) and S3(c)). And CR-derived film shows better surface coverage (Figs. S3(b) and S3(d)).

Fig. 1.  (Color online) (a) The ambient air-processed black-phase CsPbI3 film via CR strategy. The XRD patterns of the control (b) and CR-derived CsPbI3 film (c). Note: the hash key represents the signal from δ-CsPbI3; the square symbol represents the signal from PbI2; the diamond symbol represents the signal from β-CsPbI3; the circular pattern represents the signal from CsI and the asterisk represents the signal from FTO glass substrate. (d) The structure of DAST. (e) Schematic for the molecular interaction and CsPbI3 film formation. (f) The XRD pattern for DAST-modified CsPbI3 film after being stored in air for one month.

Black-phase CsPbI3 film gradually degraded and underwent phase transition when stored in air for one week, as evidenced by the gradual decrease of absorbance (Fig. S4). To further improve phase stability and optoelectronic properties of β-CsPbI3 film prepared by CR strategy, we introduced the DAST additive (Fig. 1(d)). DAST not only maintains black-phase CsPbI3 structure, but also slightly enhances the crystallinity and promotes the crystal growth orientation along (100) and (200) planes (Fig. S5). DAST also helps to reduce the grain sizes (100–200 nm) and improve the surface coverage of the resultant β-CsPbI3 film (Fig. S6). DAST molecules can interact with CsPbI3 via robust bidentate coordination, thus impeding grain growth due to the steric hindrance effect (Fig. 1(e))[11]. The interaction between DAST molecule and β-CsPbI3 was studied by FTIR (Fig. S7). The pure DAST shows characteristic signals at 1023 and 1666 cm–1, corresponding to C=C bond and benzene group, respectively. DAST-modified CsPbI3 film also shows similar peaks, but with a slight shift, suggesting possible interaction between zwitterion and ions in perovskites[20]. The DAST-modified CsPbI3 film was stored at room temperature in air with a relative humidity of ~35%. There was no obvious degradation observed even after one month, as proved by XRD pattern (Fig. 1(f)).

In short, by using the CR strategy, we successfully stabilized the black-phase CsPbI₃ film in ambient air with >70% humidity. DAST can further stabilize the black phase. The approaches in this work will be useful for developing efficient perovskite solar cells.

We appreciate the National Natural Science Foundation of China (22005355) and Guangdong Basic and Applied Basic Research Foundation (2019A1515110770). L. Ding thanks the National Key Research and Development Program of China (2017YFA0206600) and the National Natural Science Foundation of China (51773045, 21772030, 51922032, 21961160720) for financial support.

Supplementary materials to this article can be found online at https://doi.org/10.1088/1674-4926/43/3/030501.



[1]
Sutton R J, Eperon G E, Miranda L, et al. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv Energy Mater, 2016, 6(8), 1502458 doi: 10.1002/aenm.201502458
[2]
Lin L, Jiang L, Li P, et al. Simulated development and optimized performance of CsPbI3 based all-inorganic perovskite solar cells. Solar Energy, 2020, 198(1), 454 doi: 10.1016/j.solener.2020.01.081
[3]
Yu B, Zuo C, Shi J, et al. Defect engineering on all-inorganic perovskite solar cells for high efficiency. J Semicond, 2021, 42(5), 050203 doi: 10.1088/1674-4926/42/5/050203
[4]
Tang Y, Lesage A, Schall P. CsPbI3 nanocrystal films: towards higher stability and efficiency. J Mater Chem C, 2020, 8(48), 17139 doi: 10.1039/D0TC04475J
[5]
Swarnkar A, Marshall A R, Sanehira E M, et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science, 2016, 354(6308), 92 doi: 10.1126/science.aag2700
[6]
Sutton R J, Filip M R, Haghighirad A A, et al. Cubic or orthorhombic? Revealing the crystal structure of metastable black-phase CsPbI3 by theory and experiment. ACS Energy Lett, 2018, 3(8), 1787 doi: 10.1021/acsenergylett.8b00672
[7]
Straus D B, Guo S, Abeykoon A M, et al. Understanding the instability of the halide perovskite CsPbI3 through temperature-dependent structural analysis. Adv Mater, 2020, 32(32), 2001069 doi: 10.1002/adma.202001069
[8]
Li B, Zhang Y, Fu L, et al. Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells. Nat Commun, 2018, 9(1076), 1076 doi: 10.1038/s41467-018-03169-0
[9]
Ke F, Wang C, Jia C, et al. Preserving a robust CsPbI3 perovskite phase via pressure-directed octahedral tilt. Nat Commun, 2021, 12(461), 461 doi: 10.1038/s41467-020-20745-5
[10]
Huang Q, Li F, Wang M, et al. Vapor-deposited CsPbI3 solar cells demonstrate an efficiency of 16%. Sci Bull, 2021, 66(8), 757 doi: 10.1016/j.scib.2020.12.024
[11]
Wang Q, Zheng X, Deng Y, et al. Stabilizing the α-Phase of CsPbI3 perovskite by sulfobetaine zwitterions in one-step spin-coating films. Joule, 2017, 1(2), 371 doi: 10.1016/j.joule.2017.07.017
[12]
Wang K, Jin Z, Liang L, et al. All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%. Nat Commun, 2018, 9, 4544 doi: 10.1038/s41467-018-06915-6
[13]
Zhang T, Wang F, Chen H, et al. Mediator-antisolvent strategy to stabilize all-inorganic CsPbI3 for perovskite solar cells with efficiency exceeding 16%. ACS Energy Lett, 2020, 5(5), 1619 doi: 10.1021/acsenergylett.0c00497
[14]
Hu Y, Bai F, Liu X, et al. Bismuth incorporation stabilized α-CsPbI3 for fully inorganic perovskite solar cells. ACS Energy Lett, 2017, 2(10), 2219 doi: 10.1021/acsenergylett.7b00508
[15]
McMeekin D P, Sadoughi G, Rehman W, et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science, 2016, 351(6269), 151 doi: 10.1126/science.aad5845
[16]
Beal R E, Slotcavage D J, Leijtens T, et al. Cesium lead halide perovskites with improved stability for tandem solar cells. J Phys Chem Lett, 2016, 7(5), 746 doi: 10.1021/acs.jpclett.6b00002
[17]
Eperon G E, Paternò G M, Sutton R J, et al. Inorganic caesium lead iodide perovskite solar cells. J Mater Chem A, 2015, 3(39), 19688 doi: 10.1039/C5TA06398A
[18]
Hutter E M, Sutton R J, Chandrashekar S, et al. Vapour-deposited cesium lead iodide perovskites: microsecond charge carrier lifetimes and enhanced photovoltaic performance. ACS Energy Lett, 2017, 2(8), 1901 doi: 10.1021/acsenergylett.7b00591
[19]
Wang Y, Zhang T, Kan M, et al. Efficient α-CsPbI3 photovoltaics with surface terminated organic cations. Joule, 2018, 2(10), 2065 doi: 10.1016/j.joule.2018.06.013
[20]
Xu X, Zhang H, Li E, et al. Electron-enriched thione enables strong Pb-S interaction for stabilizing high quality CsPbI3 perovskite films with low-temperature processing. Chem Sci, 2020, 11(12), 3132 doi: 10.1039/C9SC06574A
[21]
Yoon S M, Min H, Kim J B, et al. Surface engineering of ambient-air-processed cesium lead triiodide layers for efficient solar cells. Joule, 2021, 5(1), 183 doi: 10.1016/j.joule.2020.11.020
[22]
Zhang T, Dar M I, Li G, et al. Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells. Sci Adv, 2017, 3(9), e1700841 doi: 10.1126/sciadv.1700841
[23]
Zhang J, Liu J, Tan A, et al. Improved stability of β-CsPbI3 inorganic perovskite using π-conjugated bifunctional surface capped organic cations for high performance photovoltaics. Chem Commun, 2020, 56(89), 13816 doi: 10.1039/D0CC05386D
[24]
Ye T, Pan L, Yang Y, et al. Synthesis of highly-oriented black CsPbI3 microstructures for high-performance solar cells. Chem Mater, 2020, 32(7), 3235 doi: 10.1021/acs.chemmater.0c00427
[25]
Wang Y, Yuan J, Zhang X, et al. Surface ligand management aided by a secondary amine enables increased synthesis yield of CsPbI3 perovskite quantum dots and high photovoltaic performance. Adv Mater, 2020, 32(32), 2000449 doi: 10.1002/adma.202000449
[26]
Wang C, Chesman A S R, Jasieniak J J. Stabilizing the cubic perovskite phase of CsPbI3 nanocrystals by using an alkyl phosphinic acid. Chem Commun, 2017, 53(1), 232 doi: 10.1039/C6CC08282C
[27]
Shi J, Wang Y, Zhao Y. Inorganic CsPbI3 perovskites toward high-efficiency photovoltaics. Energy Environ Mater, 2019, 2(2), 73 doi: 10.1002/eem2.12039
[28]
Zhang Z, Li J, Fang Z, et al. Adjusting energy level alignment between HTL and CsPbI2Br to improve solar cell efficiency. J Semicond, 2021, 42(3), 030501 doi: 10.1088/1674-4926/42/3/030501
Fig. 1.  (Color online) (a) The ambient air-processed black-phase CsPbI3 film via CR strategy. The XRD patterns of the control (b) and CR-derived CsPbI3 film (c). Note: the hash key represents the signal from δ-CsPbI3; the square symbol represents the signal from PbI2; the diamond symbol represents the signal from β-CsPbI3; the circular pattern represents the signal from CsI and the asterisk represents the signal from FTO glass substrate. (d) The structure of DAST. (e) Schematic for the molecular interaction and CsPbI3 film formation. (f) The XRD pattern for DAST-modified CsPbI3 film after being stored in air for one month.

[1]
Sutton R J, Eperon G E, Miranda L, et al. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv Energy Mater, 2016, 6(8), 1502458 doi: 10.1002/aenm.201502458
[2]
Lin L, Jiang L, Li P, et al. Simulated development and optimized performance of CsPbI3 based all-inorganic perovskite solar cells. Solar Energy, 2020, 198(1), 454 doi: 10.1016/j.solener.2020.01.081
[3]
Yu B, Zuo C, Shi J, et al. Defect engineering on all-inorganic perovskite solar cells for high efficiency. J Semicond, 2021, 42(5), 050203 doi: 10.1088/1674-4926/42/5/050203
[4]
Tang Y, Lesage A, Schall P. CsPbI3 nanocrystal films: towards higher stability and efficiency. J Mater Chem C, 2020, 8(48), 17139 doi: 10.1039/D0TC04475J
[5]
Swarnkar A, Marshall A R, Sanehira E M, et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science, 2016, 354(6308), 92 doi: 10.1126/science.aag2700
[6]
Sutton R J, Filip M R, Haghighirad A A, et al. Cubic or orthorhombic? Revealing the crystal structure of metastable black-phase CsPbI3 by theory and experiment. ACS Energy Lett, 2018, 3(8), 1787 doi: 10.1021/acsenergylett.8b00672
[7]
Straus D B, Guo S, Abeykoon A M, et al. Understanding the instability of the halide perovskite CsPbI3 through temperature-dependent structural analysis. Adv Mater, 2020, 32(32), 2001069 doi: 10.1002/adma.202001069
[8]
Li B, Zhang Y, Fu L, et al. Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells. Nat Commun, 2018, 9(1076), 1076 doi: 10.1038/s41467-018-03169-0
[9]
Ke F, Wang C, Jia C, et al. Preserving a robust CsPbI3 perovskite phase via pressure-directed octahedral tilt. Nat Commun, 2021, 12(461), 461 doi: 10.1038/s41467-020-20745-5
[10]
Huang Q, Li F, Wang M, et al. Vapor-deposited CsPbI3 solar cells demonstrate an efficiency of 16%. Sci Bull, 2021, 66(8), 757 doi: 10.1016/j.scib.2020.12.024
[11]
Wang Q, Zheng X, Deng Y, et al. Stabilizing the α-Phase of CsPbI3 perovskite by sulfobetaine zwitterions in one-step spin-coating films. Joule, 2017, 1(2), 371 doi: 10.1016/j.joule.2017.07.017
[12]
Wang K, Jin Z, Liang L, et al. All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%. Nat Commun, 2018, 9, 4544 doi: 10.1038/s41467-018-06915-6
[13]
Zhang T, Wang F, Chen H, et al. Mediator-antisolvent strategy to stabilize all-inorganic CsPbI3 for perovskite solar cells with efficiency exceeding 16%. ACS Energy Lett, 2020, 5(5), 1619 doi: 10.1021/acsenergylett.0c00497
[14]
Hu Y, Bai F, Liu X, et al. Bismuth incorporation stabilized α-CsPbI3 for fully inorganic perovskite solar cells. ACS Energy Lett, 2017, 2(10), 2219 doi: 10.1021/acsenergylett.7b00508
[15]
McMeekin D P, Sadoughi G, Rehman W, et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science, 2016, 351(6269), 151 doi: 10.1126/science.aad5845
[16]
Beal R E, Slotcavage D J, Leijtens T, et al. Cesium lead halide perovskites with improved stability for tandem solar cells. J Phys Chem Lett, 2016, 7(5), 746 doi: 10.1021/acs.jpclett.6b00002
[17]
Eperon G E, Paternò G M, Sutton R J, et al. Inorganic caesium lead iodide perovskite solar cells. J Mater Chem A, 2015, 3(39), 19688 doi: 10.1039/C5TA06398A
[18]
Hutter E M, Sutton R J, Chandrashekar S, et al. Vapour-deposited cesium lead iodide perovskites: microsecond charge carrier lifetimes and enhanced photovoltaic performance. ACS Energy Lett, 2017, 2(8), 1901 doi: 10.1021/acsenergylett.7b00591
[19]
Wang Y, Zhang T, Kan M, et al. Efficient α-CsPbI3 photovoltaics with surface terminated organic cations. Joule, 2018, 2(10), 2065 doi: 10.1016/j.joule.2018.06.013
[20]
Xu X, Zhang H, Li E, et al. Electron-enriched thione enables strong Pb-S interaction for stabilizing high quality CsPbI3 perovskite films with low-temperature processing. Chem Sci, 2020, 11(12), 3132 doi: 10.1039/C9SC06574A
[21]
Yoon S M, Min H, Kim J B, et al. Surface engineering of ambient-air-processed cesium lead triiodide layers for efficient solar cells. Joule, 2021, 5(1), 183 doi: 10.1016/j.joule.2020.11.020
[22]
Zhang T, Dar M I, Li G, et al. Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells. Sci Adv, 2017, 3(9), e1700841 doi: 10.1126/sciadv.1700841
[23]
Zhang J, Liu J, Tan A, et al. Improved stability of β-CsPbI3 inorganic perovskite using π-conjugated bifunctional surface capped organic cations for high performance photovoltaics. Chem Commun, 2020, 56(89), 13816 doi: 10.1039/D0CC05386D
[24]
Ye T, Pan L, Yang Y, et al. Synthesis of highly-oriented black CsPbI3 microstructures for high-performance solar cells. Chem Mater, 2020, 32(7), 3235 doi: 10.1021/acs.chemmater.0c00427
[25]
Wang Y, Yuan J, Zhang X, et al. Surface ligand management aided by a secondary amine enables increased synthesis yield of CsPbI3 perovskite quantum dots and high photovoltaic performance. Adv Mater, 2020, 32(32), 2000449 doi: 10.1002/adma.202000449
[26]
Wang C, Chesman A S R, Jasieniak J J. Stabilizing the cubic perovskite phase of CsPbI3 nanocrystals by using an alkyl phosphinic acid. Chem Commun, 2017, 53(1), 232 doi: 10.1039/C6CC08282C
[27]
Shi J, Wang Y, Zhao Y. Inorganic CsPbI3 perovskites toward high-efficiency photovoltaics. Energy Environ Mater, 2019, 2(2), 73 doi: 10.1002/eem2.12039
[28]
Zhang Z, Li J, Fang Z, et al. Adjusting energy level alignment between HTL and CsPbI2Br to improve solar cell efficiency. J Semicond, 2021, 42(3), 030501 doi: 10.1088/1674-4926/42/3/030501

短通讯22010037suppl.pdf

1

Stabilizing α-phase FAPbI3 solar cells

Yaxin Wang, Xin Zhang, Zejiao Shi, Lixiu Zhang, Anran Yu, et al.

Journal of Semiconductors, 2022, 43(4): 040202. doi: 10.1088/1674-4926/43/4/040202

2

Observation of exciton polariton condensation in a perovskite lattice at room temperature

Jun Zhang

Journal of Semiconductors, 2020, 41(3): 030201. doi: 10.1088/1674-4926/41/3/030201

3

Perovskite plasmonic lasers capable of mode modulation

Jingbi You

Journal of Semiconductors, 2019, 40(7): 070203. doi: 10.1088/1674-4926/40/7/070203

4

Improved efficiency and photo-stability of methylamine-free perovskite solar cells via cadmium doping

Yong Chen, Yang Zhao, Qiufeng Ye, Zema Chu, Zhigang Yin, et al.

Journal of Semiconductors, 2019, 40(12): 122201. doi: 10.1088/1674-4926/40/12/122201

5

Large area perovskite solar cell module

Longhua Cai, Lusheng Liang, Jifeng Wu, Bin Ding, Lili Gao, et al.

Journal of Semiconductors, 2017, 38(1): 014006. doi: 10.1088/1674-4926/38/1/014006

6

Improving the photocatalytic performance of TiO2 via hybridizing with graphene

K S Divya, Athulya K Madhu, T U Umadevi, T Suprabha, P. Radhakrishnan Nair, et al.

Journal of Semiconductors, 2017, 38(6): 063002. doi: 10.1088/1674-4926/38/6/063002

7

Improved interfacial properties of GaAs MOS capacitor with NH3-plasma-treated ZnON as interfacial passivation layer

Jingkang Gong, Jingping Xu, Lu Liu, Hanhan Lu, Xiaoyu Liu, et al.

Journal of Semiconductors, 2017, 38(9): 094004. doi: 10.1088/1674-4926/38/9/094004

8

A simple chemical route to synthesize the umangite phase of copper selenide (Cu3Se2) thin film at room temperature

Balasaheb M. Palve, Sandesh R. Jadkar, Habib M. Pathan

Journal of Semiconductors, 2017, 38(6): 063003. doi: 10.1088/1674-4926/38/6/063003

9

Comment on Chen et al. "Fabrication and photovoltaic conversion enhancement of graphene/n-Si Schottky barrier solar cells by electrophoretic deposition", Electrochimica Acta, 2014

Lara Valentic, Nima E. Gorji

Journal of Semiconductors, 2015, 36(9): 094012. doi: 10.1088/1674-4926/36/9/094012

10

Low power digitally controlled oscillator designs with a novel 3-transistor XNOR gate

Manoj Kumar, Sandeep K. Arya, Sujata Pandey

Journal of Semiconductors, 2012, 33(3): 035001. doi: 10.1088/1674-4926/33/3/035001

11

Physical properties of hematite α-Fe2O3 thin films: application to photoelectrochemical solar cells

S. S. Shinde, R. A. Bansode, C. H. Bhosale, K. Y. Rajpure

Journal of Semiconductors, 2011, 32(1): 013001. doi: 10.1088/1674-4926/32/1/013001

12

Cleaning method of InSb [-1-1-1] B of n-InSb [111] A/B for growth of epitaxial layers by liquid phase epitaxy

Gh. Sareminia, F. Zahedi, Sh. Eminov, Ar. Karamian

Journal of Semiconductors, 2011, 32(5): 056001. doi: 10.1088/1674-4926/32/5/056001

13

Characterization of vanadyl phthalocyanine based surface-type capacitive humidity sensors

Fakhra Aziz, M. H. Sayyad, Khassan S. Karimov, M. Saleem, Zubair Ahmad, et al.

Journal of Semiconductors, 2010, 31(11): 114002. doi: 10.1088/1674-4926/31/11/114002

14

A low-phase-noise digitally controlled crystal oscillator for DVB TV tuners

Zhao Wei, Lu Lei, Tang Zhangwen

Journal of Semiconductors, 2010, 31(7): 075003. doi: 10.1088/1674-4926/31/7/075003

15

A low-power and low-phase-noise LC digitally controlled oscillator featuring a novel capacitor bank

Tian Huanhuan, Li Zhiqiang, Chen Pufeng, Wu Rufei, Zhang Haiying, et al.

Journal of Semiconductors, 2010, 31(12): 125003. doi: 10.1088/1674-4926/31/12/125003

16

TDDB improvement by optimized processes on metal–insulator–silicon capacitors with atomic layer deposition of Al2O3 and multi layers of TiN film structure

Peng Kun, Wang Biao, Xiao Deyuan, Qiu Shengfen, Lin D C, et al.

Journal of Semiconductors, 2009, 30(8): 082005. doi: 10.1088/1674-4926/30/8/082005

17

Raman scattering studies on PZT thin films for trigonal–tetragonal phase transition

Liang Ting, Li Junhong, Du Wenlong, Xue Chenyang, Zhang Wendong, et al.

Journal of Semiconductors, 2009, 30(8): 083001. doi: 10.1088/1674-4926/30/8/083001

18

Visible photoluminescence of porous silicon covered with an HfON dielectric layer

Jiang Ran, Zhang Yan

Journal of Semiconductors, 2009, 30(8): 082003. doi: 10.1088/1674-4926/30/8/082003

19

Design of a Monolithic CMOS LC-Voltage Controlled Oscillator with Low Phase Noise for 4GHz Frequency Synthesizers

Tang Lu, Wang Zhigong, Huang Ting, Li Zhiqun

Chinese Journal of Semiconductors , 2006, 27(3): 459-466.

20

Dislocation Reduction in GaN on Sapphire by Epitaxial Lateral Overgrowth

Chen Jun, Wang Jianfeng, Wang Hui, Zhao Degang, Zhu Jianjun, et al.

Chinese Journal of Semiconductors , 2006, 27(3): 419-424.

1. Meheretu, G.M., Worku, A.K., Yihunie, M.T. et al. The recent advancement of outdoor performance of perovskite photovoltaic cells technology. Heliyon, 2024, 10(17): e36710. doi:10.1016/j.heliyon.2024.e36710
2. Long, Z., Qiu, X., Chan, C.L.J. et al. A neuromorphic bionic eye with filter-free color vision using hemispherical perovskite nanowire array retina. Nature Communications, 2023, 14(1): 1972. doi:10.1038/s41467-023-37581-y
3. Long, Z., Ding, Y., Qiu, X. et al. A dual-mode image sensor using an all-inorganic perovskite nanowire array for standard and neuromorphic imaging. Journal of Semiconductors, 2023, 44(9): 092604. doi:10.1088/1674-4926/44/9/092604
4. Zhang, Z., Fu, J., Chen, Q. et al. Dopant-Free Polymer Hole Transport Materials for Highly Stable and Efficient CsPbI3 Perovskite Solar Cells. Small, 2023, 19(11): 2206952. doi:10.1002/smll.202206952
5. Zhang, Z., Li, M., Sun, J. et al. Dimethylammonium cation stabilizes all-inorganic perovskite solar cells. Journal of Semiconductors, 2023, 44(3): 030202. doi:10.1088/1674-4926/44/3/030202
6. Xiao, H., Zuo, C., Zhang, L. et al. Efficient inorganic perovskite solar cells made by drop-coating in ambient air. Nano Energy, 2023. doi:10.1016/j.nanoen.2022.108061
7. Wang, H., Zhang, L., Cheng, M. et al. Compositional engineering for lead halide perovskite solar cells. Journal of Semiconductors, 2022, 43(8): 080202. doi:10.1088/1674-4926/43/8/080202
  • Search

    Advanced Search >>

    GET CITATION

    Tian Tian, Meifang Yang, Jianyu Yang, Wuqiang Wu, Liming Ding. Stabilizing black-phase CsPbI3 under over 70% humidity[J]. Journal of Semiconductors, 2022, 43(3): 030501. doi: 10.1088/1674-4926/43/3/030501
    T Tian, M F Yang, J Y Yang, W Q Wu, L M Ding. Stabilizing black-phase CsPbI3 under over 70% humidity[J]. J. Semicond, 2022, 43(3): 030501. doi: 10.1088/1674-4926/43/3/030501
    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1798 Times PDF downloads: 80 Times Cited by: 7 Times

    History

    Received: 31 January 2020 Revised: Online: Accepted Manuscript: 08 February 2022Uncorrected proof: 08 February 2022Published: 10 March 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Tian Tian, Meifang Yang, Jianyu Yang, Wuqiang Wu, Liming Ding. Stabilizing black-phase CsPbI3 under over 70% humidity[J]. Journal of Semiconductors, 2022, 43(3): 030501. doi: 10.1088/1674-4926/43/3/030501 ****T Tian, M F Yang, J Y Yang, W Q Wu, L M Ding. Stabilizing black-phase CsPbI3 under over 70% humidity[J]. J. Semicond, 2022, 43(3): 030501. doi: 10.1088/1674-4926/43/3/030501
      Citation:
      Tian Tian, Meifang Yang, Jianyu Yang, Wuqiang Wu, Liming Ding. Stabilizing black-phase CsPbI3 under over 70% humidity[J]. Journal of Semiconductors, 2022, 43(3): 030501. doi: 10.1088/1674-4926/43/3/030501 ****
      T Tian, M F Yang, J Y Yang, W Q Wu, L M Ding. Stabilizing black-phase CsPbI3 under over 70% humidity[J]. J. Semicond, 2022, 43(3): 030501. doi: 10.1088/1674-4926/43/3/030501

      Stabilizing black-phase CsPbI3 under over 70% humidity

      DOI: 10.1088/1674-4926/43/3/030501
      More Information
      • Tian Tian:received her PhD from University of Shanghai for Science and Technology in 2020. She received her Bachelor degree from Northwest Minzu University and her Master degree from University of Shanghai for Science and Technology in 2017. Her research focuses on semiconducting crystals and optoelectronic devices
      • Meifang Yang:is a PhD candidate in Sun Yat-sen University. She received her Master degree from Jilin Normal University in 2020. Her research focuses on perovskite solar cells
      • Wuqiang Wu:received his PhD from the University of Melbourne in 2017. He received his Bachelor and Master degrees from Sun Yat-sen University in 2011 and 2013, respectively. His research focuses on semiconducting materials and optoelectronic devices
      • Liming Ding:got his PhD from University of Science and Technology of China (was a joint student at Changchun Institute of Applied Chemistry, CAS). He started his research on OSCs and PLEDs in Olle Inganäs Lab in 1998. Later on, he worked at National Center for Polymer Research, Wright-Patterson Air Force Base and Argonne National Lab (USA). He joined Konarka as a Senior Scientist in 2008. In 2010, he joined National Center for Nanoscience and Technology as a full professor. His research focuses on innovative materials and devices. He is RSC Fellow, the nominator for Xplorer Prize, and the Associate Editor for Journal of Semiconductors
      • Corresponding author: tiant59@mail.sysu.edu.cnwuwq36@mail.sysu.edu.cnding@nanoctr.cn
      • Received Date: 2020-01-31
        Available Online: 2023-11-22

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return