Citation: |
Wei Wen, Yunlong Guo, Yunqi Liu. Multifunctional neurosynaptic devices for human perception systems[J]. Journal of Semiconductors, 2022, 43(5): 051201. doi: 10.1088/1674-4926/43/5/051201
****
Wei Wen, Yunlong Guo, Yunqi Liu. 2022: Multifunctional neurosynaptic devices for human perception systems. Journal of Semiconductors, 43(5): 051201. doi: 10.1088/1674-4926/43/5/051201
|
Multifunctional neurosynaptic devices for human perception systems
doi: 10.1088/1674-4926/43/5/051201
More Information-
Abstract
The traditional Von Neumann architecture for processing information is difficult to meet the needs of the big data era, while low-power, small-sized neurosynaptic devices can operate and store information, so that they have received extensive attention. Due to the development of artificial intelligence and robotics, neurosynaptic devices have been given high expectations and requirements. The trend of functionalization, intelligence, and integration of computing and storage is obvious. In this review, the basic principles and types of neurosynaptic devices are summarized, the achievements of neurosynaptic devices for human perception systems are discussed and a prospect on the development trend is also given. -
References
[1] Neumann J V. First draft of a report on the EDVAC. IEEE Ann Hist Comput, 1993, 15, 27 doi: 10.1109/85.238389[2] Drachman D A. Do we have brain to spare. Neurology, 2005, 64, 2004 doi: 10.1212/01.WNL.0000166914.38327.BB[3] Kuzum D, Yu S, Wong H S. Synaptic electronics: materials, devices and applications. Nanotechnology, 2013, 24, 382001 doi: 10.1088/0957-4484/24/38/382001[4] Wang Z, Wang L, Nagai M, et al. Nanoionics-enabled memristive devices: Strategies and materials for neuromorphic applications. Adv Electron Mater, 2017, 3, 1600510 doi: 10.1002/aelm.201600510[5] van de Burgt Y, Melianas A, Keene S T, et al. Organic electronics for neuromorphic computing. Nat Electron, 2018, 1, 386 doi: 10.1038/s41928-018-0103-3[6] Zhu J, Zhang T, Yang Y, et al. A comprehensive review on emerging artificial neuromorphic devices. Appl Phys Rev, 2020, 7, 011312 doi: 10.1063/1.5118217[7] Abbott L F, Regehr W G. Synaptic computation. Nature, 2004, 431, 796 doi: 10.1038/nature03010[8] Yang J J, Pickett M D, Li X, et al. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat Nanotechnol, 2008, 3, 429 doi: 10.1038/nnano.2008.160[9] Sun W, Gao B, Chi M, et al. Understanding memristive switching via in situ characterization and device modeling. Nat Commun, 2019, 10, 3453 doi: 10.1038/s41467-019-11411-6[10] Yang R, Terabe K, Liu G, et al. On-demand nanodevice with electrical and neuromorphic multifunction realized by local ion migration. ACS Nano, 2012, 6, 9515 doi: 10.1021/nn302510e[11] Kim S J, Kim S B, Jang H W. Competing memristors for brain-inspired computing. iScience, 2021, 24, 101889 doi: 10.1016/j.isci.2020.101889[12] Scott J F, Paz de Araujo C A. Ferroelectric memories. Science, 1989, 246, 1400 doi: 10.1126/science.246.4936.1400[13] Dai S, Zhao Y, Wang Y, et al. Recent advances in transistor-based artificial synapses. Adv Funct Mater, 2019, 29, 1903700 doi: 10.1002/adfm.201903700[14] Van Tho L, Baeg K J, Noh Y Y. Organic nano-floating-gate transistor memory with metal nanoparticles. Nano Converg, 2016, 3, 10 doi: 10.1186/s40580-016-0069-7[15] Ren Y, Yang J Q, Zhou L, et al. Gate-tunable synaptic plasticity through controlled polarity of charge trapping in fullerene composites. Adv Funct Mater, 2018, 28, 1805599 doi: 10.1002/adfm.201805599[16] Liu Z C, Xue F L, Su Y, et al. Memory effect of a polymer thin-film transistor with self-assembled gold nanoparticles in the gate dielectric. IEEE Trans Nanotechnol, 2006, 5, 379 doi: 10.1109/TNANO.2006.876928[17] Baeg K J, Noh Y Y, Sirringhaus H, et al. Controllable shifts in threshold voltage of top-gate polymer field-effect transistors for applications in organic nano floating gate memory. Adv Funct Mater, 2010, 20, 224 doi: 10.1002/adfm.200901677[18] Talapin D V, Lee J S, Kovalenko M V, et al. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev, 2010, 110, 389 doi: 10.1021/cr900137k[19] Kang M, Baeg K J, Khim D, et al. Printed, flexible, organic nano-floating-gate memory: effects of metal nanoparticles and blocking dielectrics on memory characteristics. Adv Funct Mater, 2013, 23, 3503 doi: 10.1002/adfm.201203417[20] Wang W, Shi J, Ma D. Organic thin-film transistor memory with nanoparticle floating gate. IEEE Trans Electron Devices, 2009, 56, 1036 doi: 10.1109/TED.2009.2016031[21] Joga R. Quantum dot floating gate transistor with multi-wall carbon nano tube channel for non-volatile memory devices. 2012 International Conference on Communication Systems and Network Technologies, 2012, 774 doi: 10.1109/CSNT.2012.169[22] Kim S H, Hong K, Xie W, et al. Electrolyte-gated transistors for organic and printed electronics. Adv Mater, 2013, 25, 1822 doi: 10.1002/adma.201202790[23] Xu W, Min S Y, Hwang H, et al. Organic core-sheath nanowire artificial synapses with femtojoule energy consumption. Sci Adv, 2016, 2, e1501326 doi: 10.1126/sciadv.1501326[24] Yu S. Neuro-inspired computing with emerging nonvolatile memorys. Proc IEEE, 2018, 106, 260 doi: 10.1109/JPROC.2018.2790840[25] Martins P, Lanceros-Méndez S. Polymer-based magnetoelectric materials. Adv Funct Mater, 2013, 23, 3371 doi: 10.1002/adfm.201202780[26] Benner A F, Ignatowski M, Kash J A, et al. Exploitation of optical interconnects in future server architectures. IBM J Res Dev, 2005, 49, 755 doi: 10.1147/rd.494.0755[27] Rosenbluth D, Kravtsov K, Fok M P, et al. A high performance photonic pulse processing device. Opt Express, 2009, 17, 22767 doi: 10.1364/OE.17.022767[28] Kuramochi E, Nozaki K, Shinya A, et al. Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip. Nat Photonics, 2014, 8, 474 doi: 10.1038/nphoton.2014.93[29] Quiroga R Q, Reddy L, Kreiman G, et al. Invariant visual representation by single neurons in the human brain. Nature, 2005, 435, 1102 doi: 10.1038/nature03687[30] Sun F, Lu Q, Feng S, et al. Flexible artificial sensory systems based on neuromorphic devices. ACS Nano, 2021, 15, 3875 doi: 10.1021/acsnano.0c10049[31] Zhang J, Dai S, Zhao Y, et al. Recent progress in photonic synapses for neuromorphic systems. Adv Intell Syst, 2020, 2, 1900136 doi: 10.1002/aisy.201900136[32] Chen S, Lou Z, Chen D, et al. An artificial flexible visual memory system based on an UV-motivated memristor. Adv Mater, 2018, 30, 1705400 doi: 10.1002/adma.201705400[33] Zhu Q B, Li B, Yang D D, et al. A flexible ultrasensitive optoelectronic sensor array for neuromorphic vision systems. Nat Commun, 2021, 12, 1798 doi: 10.1038/s41467-021-22047-w[34] Winstone B, Pipe T, Melhuish C, et al. Biomimetic and biohybrid systems. Springer, 2015[35] Zhao S, Zhu R. Electronic skin with multifunction sensors based on thermosensation. Adv Mater, 2017, 29, 1606151 doi: 10.1002/adma.201606151[36] You I, Mackanic D G, Matsuhisa N, et al. Artificial multimodal receptors based on ion relaxation dynamics. Science, 2020, 370, 961 doi: 10.1126/science.aba5132[37] Rahman M A, Walia S, Naznee S, et al. Artificial somatosensors: Feedback receptors for electronic skins. Adv Intell Syst, 2020, 2, 2000094 doi: 10.1002/aisy.202000094[38] Zhao T, Zheng C, He H, et al. A self-powered biosensing electronic-skin for real-time sweat Ca2+ detection and wireless data transmission. Smart Mater Struct 2019, 28, 0850, 15 doi: 10.1088/1361-665X/ab2624[39] Huang H, Han L, Fu X, et al. Multiple stimuli responsive and identifiable zwitterionic ionic conductive hydrogel for bionic electronic skin. Adv Electron Mater, 2020, 6, 2000239 doi: 10.1002/aelm.202000239[40] Yuan X, Gao X, Shen X, et al. A 3D-printed, alternatively tilt-polarized PVDF-TrFE polymer with enhanced piezoelectric effect for self-powered sensor application. Nano Energy, 2021, 85, 105985 doi: 10.1016/j.nanoen.2021.105985[41] Sanderson K. Electronic skin: from flexibility to a sense of touch. Nature, 2021, 591, 685 doi: 10.1038/d41586-021-00739-z[42] Kim Y, Chortos A, Xu W, et al. A bioinspired flexible organic artificial afferent nerve. Science, 2018, 360, 998 doi: 10.1126/science.aao0098[43] Lee Y R, Trung T Q, Hwang B U, et al. A flexible artificial intrinsic-synaptic tactile sensory organ. Nat Commun, 2020, 11, 2753 doi: 10.1038/s41467-020-16606-w[44] Purves D, Augustine G J, Fitzpatrick D, et al. Neuroscience. Sinauer Associates Inc, 2001[45] Handel S. Listening an introduction to the perception of auditory events. The MIT Press, 1993[46] Nicholls J G, Martin A R, Fuchs P A, et al. From neuron to brain. Sinauer Associates, 2011[47] Ji X, Zhao X, Tan M C, et al. Artificial perception built on memristive system: Visual, auditory, and tactile sensations. Adv Intell Syst, 2020, 2, 1900118 doi: 10.1002/aisy.201900118[48] Liu Y, Li E, Wang X, et al. Self-powered artificial auditory pathway for intelligent neuromorphic computing and sound detection. Nano Energy, 2020, 78, 105403 doi: 10.1016/j.nanoen.2020.105403[49] Seo D G, Lee Y, Go G T, et al. Versatile neuromorphic electronics by modulating synaptic decay of single organic synaptic transistor: From artificial neural networks to neuro-prosthetics. Nano Energy, 2019, 65, 104035 doi: 10.1016/j.nanoen.2019.104035[50] Trivedi B P. Gustatory system: the finer points of taste. Nature, 2012, 486, S2 doi: 10.1038/486S2a[51] Rosenthal A J. Food texture: Measurement and perception. Springer, 1999[52] Zhang S, Guo K, Sun L, et al. Selective release of different neurotransmitters emulated by a p-i-n junction synaptic transistor for environment-responsive action control. Adv Mater, 2021, 33, e2007350 doi: 10.1002/adma.202007350[53] Hoover K C. Smell with inspiration: the evolutionary significance of olfaction. Am J Phys Anthropol, 2010, 53, 63 doi: 10.1002/ajpa.21441[54] Wang T, Huang H M, Wang X X, et al. An artificial olfactory inference system based on memristive devices. InfoMat, 2021, 3, 804 doi: 10.1002/inf2.12196[55] Li M, Deng J, Wang X, et al. Flexible printed single-walled carbon nanotubes olfactory synaptic transistors with crosslinked poly(4-vinylphenol) as dielectrics. Flex Print Electron, 2021, 6, 034001 doi: 10.1088/2058-8585/abee2d[56] Wang H, Zhao Q, Ni Z, et al. A ferroelectric/electrochemical modulated organic synapse for ultraflexible, artificial visual-perception system. Adv Mater, 2018, 30, e1803961 doi: 10.1002/adma.201803961[57] van de Burgt Y, Lubberman E, Fuller E J, et al. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat Mater, 2017, 16, 414 doi: 10.1038/nmat4856[58] Wang H, Liu H, Zhao Q, et al. A retina-like dual band organic photosensor array for filter-free near-infrared-to-memory operations. Adv Mater, 2017, 29, 1701772 doi: 10.1002/adma.201701772[59] Yang C S, Shang D S, Liu N, et al. All-solid-state synaptic transistor with ultralow conductance for neuromorphic computing. Adv Funct Mater, 2018, 28, 1804170 doi: 10.1002/adfm.201804170[60] Seo S, Jo S H, Kim S, et al. Artificial optic-neural synapse for colored and color-mixed pattern recognition. Nat Commun, 2018, 9, 5106 doi: 10.1038/s41467-018-07572-5[61] Kwon S M, Cho S W, Kim M, et al. Environment-adaptable artificial visual perception behaviors using a light-adjustable optoelectronic neuromorphic device array. Adv Mater, 2019, 31, e1906433 doi: 10.1002/adma.201906433[62] Kim M K, Lee J S. Ferroelectric analog synaptic transistors. Nano Lett, 2019, 19, 2044 doi: 10.1021/acs.nanolett.9b00180[63] Lv Z, Chen M, Qian F, et al. Mimicking neuroplasticity in a hybrid biopolymer transistor by dual modes modulation. Adv Funct Mater, 2019, 29, 1902374 doi: 10.1002/adfm.201902374[64] Sun J, Oh S, Choi Y, et al. Optoelectronic synapse based on IGZO-alkylated graphene oxide hybrid structure. Adv Funct Mater, 2018, 28, 1804397 doi: 10.1002/adfm.201804397[65] Kim S, Choi B, Lim M, et al. Pattern recognition using carbon nanotube synaptic transistors with an adjustable weight update protocol. ACS Nano, 2017, 11, 2814 doi: 10.1021/acsnano.6b07894[66] Ham S, Choi S, Cho H, et al. Photonic organolead halide perovskite artificial synapse capable of accelerated learning at low power inspired by dopamine-facilitated synaptic activity. Adv Funct Mater, 2019, 29, 1806646 doi: 10.1002/adfm.201806646[67] Zang Y, Shen H, Huang D, et al. A dual-organic-transistor-based tactile-perception system with signal-processing functionality. Adv Mater, 2017, 29, 1606088 doi: 10.1002/adma.201606088[68] Chen Y, Gao G, Zhao J, et al. Piezotronic graphene artificial sensory synapse. Adv Funct Mater, 2019, 29, 1900959 doi: 10.1002/adfm.201900959[69] Sun L, Zhang Y, Hwang G, et al. Synaptic computation enabled by Joule heating of single-layered semiconductors for sound localization. Nano Lett, 2018, 18, 3229 doi: 10.1021/acs.nanolett.8b00994[70] Song Z, Tong Y, Zhao X, et al. A flexible conformable artificial organ-damage memory system towards hazardous gas leakage based on a single organic transistor. Mater Horiz, 2019, 6, 717 doi: 10.1039/C8MH01577E[71] Yu Y, Ma Q, Ling H, et al. Small-molecule-based organic field-effect transistor for nonvolatile memory and artificial synapse. Adv Funct Mater, 2019, 29, 1904602 doi: 10.1002/adfm.201904602[72] Han X, Xu Z, Wu W, et al. Recent progress in optoelectronic synapses for artificial visual-perception system. Small Struct, 2020, 1, 2000029 doi: 10.1002/sstr.202000029[73] Shao L, Zhao Y, Liu Y. Organic synaptic transistors: The evolutionary path from memory cells to the application of artificial neural networks. Adv Funct Mater, 2021, 31, 2101951 doi: 10.1002/adfm.202101951 -
Proportional views