REVIEWS

Characterization of interfaces: Lessons from the past for the future of perovskite solar cells

Wanlong Wang1, Dongyang Zhang2, Rong Liu1, , Deepak Thrithamarassery Gangadharan2, Furui Tan1, and Makhsud I. Saidaminov2,

+ Author Affiliations

 Corresponding author: Rong Liu, liurong@pkusz.edu.cn; Furui Tan, frtan@henu.edu.cn; Makhsud I. Saidaminov, msaidaminov@uvic.ca

PDF

Turn off MathJax

Abstract: A photovoltaic technology historically goes through two major steps to evolve into a mature technology. The first step involves advances in materials and is usually accompanied by the rapid improvement of power conversion efficiency. The second step focuses on interfaces and is usually accompanied by significant stability improvement. As an emerging generation of photovoltaic technology, perovskite solar cells are transitioning to the second step of their development when a significant focus shifts toward interface studies and engineering. While various interface engineering strategies have been developed, interfacial characterization is crucial to show the effectiveness of interfacial modification. Here, we review the characterization techniques that have been utilized in studying interface properties in perovskite solar cells. We first summarize the main roles of interfaces in perovskite solar cells, and then we discuss some typical characterization methodologies for morphological, optical, and electrical studies of interfaces. Successful experiences and existing problems are analyzed when discussing some commonly used methods. We then analyze the challenges and provide an outlook for further development of interfacial characterizations. This review aims to evoke strengthened research devotion on novel and persuasive interfacial engineering.

Key words: interfaceperovskite solar cellscharacterization methods



[1]
Dullweber T, Stöhr M, Kruse C, et al. Evolutionary PERC+ solar cell efficiency projection towards 24% evaluating shadow-mask-deposited poly-Si fingers below the Ag front contact as next improvement step. Sol Energy Mater Sol Cells, 2020, 212, 110586 doi: 10.1016/j.solmat.2020.110586
[2]
Yu J, Liao M D, Yan D, et al. Activating and optimizing evaporation-processed magnesium oxide passivating contact for silicon solar cells. Nano Energy, 2019, 62, 181 doi: 10.1016/j.nanoen.2019.05.015
[3]
Allen T G, Bullock J, Yang X B, et al. Passivating contacts for crystalline silicon solar cells. Nat Energy, 2019, 4, 914 doi: 10.1038/s41560-019-0463-6
[4]
Yoshikawa K, Kawasaki H, Yoshida W, et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat Energy, 2017, 2, 1 doi: 10.1038/nenergy.2017.32
[5]
Kato T, Wu J L, Hirai Y, et al. Record efficiency for thin-film polycrystalline solar cells up to 22.9% achieved by Cs-treated Cu(In, Ga)(Se, S)2. IEEE J Photovolt, 2019, 9, 325 doi: 10.1109/JPHOTOV.2018.2882206
[6]
Metzger W K, Grover S, Lu D, et al. Exceeding 20% efficiency with in situ group V doping in polycrystalline CdTe solar cells. Nat Energy, 2019, 4, 837 doi: 10.1038/s41560-019-0446-7
[7]
Burst J M, Duenow J N, Albin D S, et al. CdTe solar cells with open-circuit voltage breaking the 1 V barrier. Nat Energy, 2016, 1, 16015 doi: 10.1038/nenergy.2016.15
[8]
Green M A, Hishikawa Y, Dunlop E D, et al. Solar cell efficiency tables (Version 53). Prog Photovolt: Res Appl, 2019, 27, 3 doi: 10.1002/pip.3102
[9]
Jeong M, Choi I W, Go E M, et al. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science, 2020, 369, 1615 doi: 10.1126/science.abb7167
[10]
Han T H, Tan S, Xue J J, et al. Interface and defect engineering for metal halide perovskite optoelectronic devices. Adv Mater, 2019, 31, 1803515 doi: 10.1002/adma.201803515
[11]
Bai Y, Meng X Y, Yang S H. Interface engineering for highly efficient and stable planar p-i-n perovskite solar cells. Adv Energy Mater, 2018, 8, 1701883 doi: 10.1002/aenm.201701883
[12]
Schulz P, Cahen D, Kahn A. Halide perovskites: Is it all about the interfaces. Chem Rev, 2019, 119, 3349 doi: 10.1021/acs.chemrev.8b00558
[13]
Zhang F, Zhu K. Additive engineering for efficient and stable perovskite solar cells. Adv Energy Mater, 2020, 10, 1902579 doi: 10.1002/aenm.201902579
[14]
Zuo C T, Bolink H J, Han H W, et al. Advances in perovskite solar cells. Adv Sci, 2016, 3, 1500324 doi: 10.1002/advs.201500324
[15]
Jeon N J, Na H, Jung E H, et al. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat Energy, 2018, 3, 682 doi: 10.1038/s41560-018-0200-6
[16]
Jiang Q, Zhao Y, Zhang X W, et al. Surface passivation of perovskite film for efficient solar cells. Nat Photonics, 2019, 13, 460 doi: 10.1038/s41566-019-0398-2
[17]
Yang G, Ren Z W, Liu K, et al. Stable and low-photovoltage-loss perovskite solar cells by multifunctional passivation. Nat Photonics, 2021, 15, 681 doi: 10.1038/s41566-021-00829-4
[18]
Shao S Y, Loi M A. The role of the interfaces in perovskite solar cells. Adv Mater Interfaces, 2020, 7, 1901469 doi: 10.1002/admi.201901469
[19]
Miao Y W, Zheng M M, Wang H X, et al. In-situ secondary annealing treatment assisted effective surface passivation of shallow defects for efficient perovskite solar cells. J Power Sources, 2021, 492, 229621 doi: 10.1016/j.jpowsour.2021.229621
[20]
Wang P, Cai F, Yang L, et al. Eliminating light-soaking instability in planar heterojunction perovskite solar cells by interfacial modifications. ACS Appl Mater Interfaces, 2018, 10, 33144 doi: 10.1021/acsami.8b08958
[21]
Zheng F, Wen X M, Bu T L, et al. Slow response of carrier dynamics in perovskite interface upon illumination. ACS Appl Mater Interfaces, 2018, 10, 31452 doi: 10.1021/acsami.8b13932
[22]
Chen W, Zhou Y C, Chen G C, et al. Alkali chlorides for the suppression of the interfacial recombination in inverted planar perovskite solar cells. Adv Energy Mater, 2019, 9, 1803872 doi: 10.1002/aenm.201803872
[23]
Xiong S B, Hao T, Sun Y Y, et al. Defect passivation by nontoxic biomaterial yields 21% efficiency perovskite solar cells. J Energy Chem, 2021, 55, 265 doi: 10.1016/j.jechem.2020.06.061
[24]
Sherkar T S, Momblona C, Gil-Escrig L, et al. Recombination in perovskite solar cells: Significance of grain boundaries, interface traps, and defect ions. ACS Energy Lett, 2017, 2, 1214 doi: 10.1021/acsenergylett.7b00236
[25]
Leguy A M A, Hu Y H, Campoy-Quiles M, et al. Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells. Chem Mater, 2015, 27, 3397 doi: 10.1021/acs.chemmater.5b00660
[26]
Deng F, Li X T, Lv X, et al. Low-temperature processing all-inorganic carbon-based perovskite solar cells up to 11.78% efficiency via alkali hydroxides interfacial engineering. ACS Appl Energy Mater, 2020, 3, 401 doi: 10.1021/acsaem.9b01652
[27]
Wu J H, Shi J J, Li Y M, et al. Quantifying the interface defect for the stability origin of perovskite solar cells. Adv Energy Mater, 2019, 9, 1901352 doi: 10.1002/aenm.201901352
[28]
Wu T T, Zhen C, Zhu H Z, et al. Gradient Sn-doped heteroepitaxial film of faceted rutile TiO2 as an electron selective layer for efficient perovskite solar cells. ACS Appl Mater Interfaces, 2019, 11, 19638 doi: 10.1021/acsami.9b04308
[29]
Wang G X, Wang L P, Qiu J H, et al. In situ passivation on rear perovskite interface for efficient and stable perovskite solar cells. ACS Appl Mater Interfaces, 2020, 12, 7690 doi: 10.1021/acsami.9b18572
[30]
Hsieh H C, Hsiow C Y, Lin K F, et al. Analysis of defects and traps in N–I–P layered-structure of perovskite solar cells by charge-based deep level transient spectroscopy (Q-DLTS). J Phys Chem C, 2018, 122, 17601 doi: 10.1021/acs.jpcc.8b01949
[31]
Liu Z H, Qiu L B, Ono L K, et al. A holistic approach to interface stabilization for efficient perovskite solar modules with over 2, 000-hour operational stability. Nat Energy, 2020, 5, 596 doi: 10.1038/s41560-020-0653-2
[32]
Mahapatra A, Prochowicz D, Tavakoli M M, et al. A review of aspects of additive engineering in perovskite solar cells. J Mater Chem A, 2020, 8, 27 doi: 10.1039/C9TA07657C
[33]
Cao S L, Wang H X, Li H Y, et al. Critical role of interface contact modulation in realizing low-temperature fabrication of efficient and stable CsPbIBr2 perovskite solar cells. Chem Eng J, 2020, 394, 124903 doi: 10.1016/j.cej.2020.124903
[34]
Tavakoli M M, Tavakoli R, Yadav P, et al. A graphene/ZnO electron transfer layer together with perovskite passivation enables highly efficient and stable perovskite solar cells. J Mater Chem A, 2019, 7, 679 doi: 10.1039/C8TA10857A
[35]
Zheng X P, Hou Y, Bao C X, et al. Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat Energy, 2020, 5, 131 doi: 10.1038/s41560-019-0538-4
[36]
Wu Z F, Liu Z H, Hu Z H, et al. Highly efficient and stable perovskite solar cells via modification of energy levels at the perovskite/carbon electrode interface. Adv Mater, 2019, 31, 1804284 doi: 10.1002/adma.201804284
[37]
Tavakoli M M, Saliba M, Yadav P, et al. Synergistic crystal and interface engineering for efficient and stable perovskite photovoltaics. Adv Energy Mater, 2019, 9, 1802646 doi: 10.1002/aenm.201802646
[38]
Yoo J J, Wieghold S, Sponseller M C, et al. An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss. Energy Environ Sci, 2019, 12, 2192 doi: 10.1039/C9EE00751B
[39]
Boyd C C, Cheacharoen R, Leijtens T, et al. Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem Rev, 2019, 119, 3418 doi: 10.1021/acs.chemrev.8b00336
[40]
Pearson A J, Eperon G E, Hopkinson P E, et al. Oxygen degradation in mesoporous Al2O3/CH3NH3PbI3− xCl x perovskite solar cells: Kinetics and mechanisms. Adv Energy Mater, 2016, 6, 1600014 doi: 10.1002/aenm.201600014
[41]
Noel N K, Stranks S D, Abate A, et al. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ Sci, 2014, 7, 3061 doi: 10.1039/C4EE01076K
[42]
Seo J Y, Kim H S, Akin S, et al. Novel p-dopant toward highly efficient and stable perovskite solar cells. Energy Environ Sci, 2018, 11, 2985 doi: 10.1039/C8EE01500G
[43]
Chen J Z, Park N G. Inorganic hole transporting materials for stable and high efficiency perovskite solar cells. J Phys Chem C, 2018, 122, 14039 doi: 10.1021/acs.jpcc.8b01177
[44]
Berhe T A, Su W N, Chen C H, et al. Organometal halide perovskite solar cells: Degradation and stability. Energy Environ Sci, 2016, 9, 323 doi: 10.1039/C5EE02733K
[45]
Niu G D, Guo X D, Wang L D. Review of recent progress in chemical stability of perovskite solar cells. J Mater Chem A, 2015, 3, 8970 doi: 10.1039/C4TA04994B
[46]
Niu T Q, Lu J, Munir R, et al. Stable high-performance perovskite solar cells via grain boundary passivation. Adv Mater, 2018, 30, 1706576 doi: 10.1002/adma.201706576
[47]
Guo Q, Yuan F, Zhang B, et al. Passivation of the grain boundaries of CH3NH3PbI3 using carbon quantum dots for highly efficient perovskite solar cells with excellent environmental stability. Nanoscale, 2018, 11, 115 doi: 10.1039/C8NR08295B
[48]
Yang J, Siempelkamp B D, Liu D, et al. Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano, 2015, 9, 1955 doi: 10.1021/nn506864k
[49]
Song Z N, Abate A, Watthage S C, et al. Perovskite solar cell stability in humid air: Partially reversible phase transitions in the PbI2-CH3NH3I-H2O system. Adv Energy Mater, 2016, 6, 1600846 doi: 10.1002/aenm.201600846
[50]
Niu G D, Li W Z, Meng F Q, et al. Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J Mater Chem A, 2014, 2, 705 doi: 10.1039/C3TA13606J
[51]
Chen Y, Li N, Wang L, et al. Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells. Nat Commun, 2019, 10, 1112 doi: 10.1038/s41467-019-09093-1
[52]
Zheng L L, Chung Y H, Ma Y Z, et al. A hydrophobic hole transporting oligothiophene for planar perovskite solar cells with improved stability. Chem Commun, 2014, 50, 11196 doi: 10.1039/C4CC04680C
[53]
Li X D, Ke S Z, Feng X X, et al. Enhancing the stability of perovskite solar cells through cross-linkable and hydrogen bonding multifunctional additives. J Mater Chem A, 2021, 9, 12684 doi: 10.1039/d1ta01572a
[54]
Yang J, Liu C, Cai C S, et al. High-performance perovskite solar cells with excellent humidity and thermo-stability via fluorinated perylenediimide. Adv Energy Mater, 2019, 9, 1900198 doi: 10.1002/aenm.201900198
[55]
Wu W Q, Yang Z, Rudd P N, et al. Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells. Sci Adv, 2019, 5, eaav8925 doi: 10.1126/sciadv.aav8925
[56]
Zheng X P, Troughton J, Gasparini N, et al. Quantum dots supply bulk- and surface-passivation agents for efficient and stable perovskite solar cells. Joule, 2019, 3, 1963 doi: 10.1016/j.joule.2019.05.005
[57]
Yu B, Zuo C, Shi J, et al. Defect engineering on all-inorganic perovskite solar cells for high efficiency. J Semicond, 2021, 42, 050203 doi: 10.1088/1674-4926/42/5/050203
[58]
Cheng M, Zuo C, Wu Y, et al. Charge-transport layer engineering in perovskite solar cells. Sci Bull, 2020, 65, 1237 doi: 10.1016/j.scib.2020.04.021
[59]
Zhang J, Hou S X, Li R J, et al. I/P interface modification for stable and efficient perovskite solar cells. J Semicond, 2020, 41, 052202 doi: 10.1088/1674-4926/41/5/052202
[60]
Tan H, Jain A, Voznyy O, et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science, 2017, 355, 722 doi: 10.1126/science.aai9081
[61]
Tan W L, Choo Y Y, Huang W C, et al. Oriented attachment as the mechanism for microstructure evolution in chloride-derived hybrid perovskite thin films. ACS Appl Mater Interfaces, 2019, 11, 39930 doi: 10.1021/acsami.9b13259
[62]
Ren J, Luo Q, Hou Q Z, et al. Suppressing charge recombination and ultraviolet light degradation of perovskite solar cells using silicon oxide passivation. ChemElectroChem, 2019, 6, 3167 doi: 10.1002/celc.201900688
[63]
Ha J, Kim H, Lee H, et al. Device architecture for efficient, low-hysteresis flexible perovskite solar cells: Replacing TiO2 with C60 assisted by polyethylenimine ethoxylated interfacial layers. Sol Energy Mater Sol Cells, 2017, 161, 338 doi: 10.1016/j.solmat.2016.11.031
[64]
Zhang X, Ma S, You J B, et al. Tailoring molecular termination for thermally stable perovskite solar cells. J Semicond, 2021, 42, 112201 doi: 10.1088/1674-4926/42/11/112201
[65]
Shin S S, Suk J H, Kang B J, et al. Energy-level engineering of the electron transporting layer for improving open-circuit voltage in dye and perovskite-based solar cells. Energy Environ Sci, 2019, 12, 958 doi: 10.1039/C8EE03672A
[66]
Idrissi S, Ziti S, Labrim H, et al. Band gaps of the solar perovskites photovoltaic CsXCl3 (X = Sn, Pb or Ge). Mater Sci Semicond Process, 2021, 122, 105484 doi: 10.1016/j.mssp.2020.105484
[67]
Zhang L H, Zhang X, Lu G. Band alignment in two-dimensional halide perovskite heterostructures: Type I or type II. J Phys Chem Lett, 2020, 11, 2910 doi: 10.1021/acs.jpclett.0c00376
[68]
Liao C S, Yu Z L, He P B, et al. Effects of composition modulation on the type of band alignments for Pd2Se3/CsSnBr3 van der Waals heterostructure: A transition from type I to type II. J Power Sources, 2020, 478, 229078 doi: 10.1016/j.jpowsour.2020.229078
[69]
Raoui Y, Ez-Zahraouy H, Kazim S, et al. Energy level engineering of charge selective contact and halide perovskite by modulating band offset: Mechanistic insights. J Energy Chem, 2021, 54, 822 doi: 10.1016/j.jechem.2020.06.030
[70]
Lim K G, Ahn S, Kim Y H, et al. Universal energy level tailoring of self-organized hole extraction layers in organic solar cells and organic–inorganic hybrid perovskite solar cells. Energy Environ Sci, 2016, 9, 932 doi: 10.1039/C5EE03560K
[71]
Begum R, Parida M R, Abdelhady A L, et al. Engineering interfacial charge transfer in CsPbBr3 perovskite nanocrystals by heterovalent doping. J Am Chem Soc, 2017, 139, 731 doi: 10.1021/jacs.6b09575
[72]
Meggiolaro D, Mosconi E, Proppe A H, et al. Energy level tuning at the MAPbI3 perovskite/contact interface using chemical treatment. ACS Energy Lett, 2019, 4, 2181 doi: 10.1021/acsenergylett.9b01584
[73]
Choi H, Jeong J, Kim H B, et al. Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy, 2014, 7, 80 doi: 10.1016/j.nanoen.2014.04.017
[74]
Du K Z, Wang X M, Han Q W, et al. Heterovalent B-site co-alloying approach for halide perovskite bandgap engineering. ACS Energy Lett, 2017, 2, 2486 doi: 10.1021/acsenergylett.7b00824
[75]
Unger E L, Kegelmann L, Suchan K, et al. Roadmap and roadblocks for the band gap tunability of metal halide perovskites. J Mater Chem A, 2017, 5, 11401 doi: 10.1039/C7TA00404D
[76]
Ding X D, Wang H X, Chen C, et al. Passivation functionalized phenothiazine-based hole transport material for highly efficient perovskite solar cell with efficiency exceeding 22%. Chem Eng J, 2021, 410, 128328 doi: 10.1016/j.cej.2020.128328
[77]
Xie L S, Cao Z Y, Wang J W, et al. Improving energy level alignment by adenine for efficient and stable perovskite solar cells. Nano Energy, 2020, 74, 104846 doi: 10.1016/j.nanoen.2020.104846
[78]
Zhang Z H, Li J, Fang Z M, et al. Adjusting energy level alignment between HTL and CsPbI2Br to improve solar cell efficiency. J Semicond, 2021, 42, 030501 doi: 10.1088/1674-4926/42/3/030501
[79]
Cao Q, Li Z, Han J, et al. Electron transport bilayer with cascade energy alignment for efficient perovskite solar cells. Sol RRL, 2019, 3, 1900333 doi: 10.1002/solr.201900333
[80]
Schulz P, Edri E, Kirmayer S, et al. Interface energetics in organo-metal halide perovskite-based photovoltaic cells. Energy Environ Sci, 2014, 7, 1377 doi: 10.1039/c4ee00168k
[81]
Guo X, McCleese C, Kolodziej C, et al. Identification and characterization of the intermediate phase in hybrid organic–inorganic MAPbI3 perovskite. Dalton Trans, 2016, 45, 3806 doi: 10.1039/C5DT04420K
[82]
Shkir M, Khan M T, AlFaify S. Novel Nd-doping effect on structural, morphological, optical, and electrical properties of facilely fabricated PbI2 thin films applicable to optoelectronic devices. Appl Nanosci, 2019, 9, 1417 doi: 10.1007/s13204-019-00983-w
[83]
Yang L, Wang X, Mai X, et al. Constructing efficient mixed-ion perovskite solar cells based on TiO2 nanorod array. J Colloid Interface Sci, 2019, 534, 459 doi: 10.1016/j.jcis.2018.09.045
[84]
Chen Y, Meng Q, Xiao Y, et al. Mechanism of PbI2 in situ passivated perovskite films for enhancing the performance of perovskite solar cells. ACS Appl Mater Interfaces, 2019, 11, 44101 doi: 10.1021/acsami.9b13648
[85]
Cui Q, Zhao X C, Lin H, et al. Improved efficient perovskite solar cells based on Ta-doped TiO2 nanorod arrays. Nanoscale, 2017, 9, 18897 doi: 10.1039/C7NR05687G
[86]
Liu J M, Zhu L Q, Xiang S S, et al. Cs-doped TiO2 nanorod array enhances electron injection and transport in carbon-based CsPbI3 perovskite solar cells. ACS Sustain Chem Eng, 2019, 7, 16927 doi: 10.1021/acssuschemeng.9b04772
[87]
Wu S F, Chen C, Wang J M, et al. Controllable preparation of rutile TiO2 nanorod array for enhanced photovoltaic performance of perovskite solar cells. ACS Appl Energy Mater, 2018, 1, 1649 doi: 10.1021/acsaem.8b00106
[88]
Chandrasekhar P S, Dubey A, Qiao Q Q. High efficiency perovskite solar cells using nitrogen-doped graphene/ZnO nanorod composite as an electron transport layer. Sol Energy, 2020, 197, 78 doi: 10.1016/j.solener.2019.12.062
[89]
Zhao Y, Tan H, Yuan H, et al. Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nat Commun, 2018, 9, 1607 doi: 10.1038/s41467-018-04029-7
[90]
Nukunudompanich M, Budiutama G, Suzuki K, et al. Dominant effect of the grain size of the MAPbI3 perovskite controlled by the surface roughness of TiO2 on the performance of perovskite solar cells. CrystEngComm, 2020, 22, 2718 doi: 10.1039/D0CE00169D
[91]
Jung E H, Jeon N J, Park E Y, et al. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature, 2019, 567, 511 doi: 10.1038/s41586-019-1036-3
[92]
Ravi V K, Santra P K, Joshi N, et al. Origin of the substitution mechanism for the binding of organic ligands on the surface of CsPbBr3 perovskite nanocubes. J Phys Chem Lett, 2017, 8, 4988 doi: 10.1021/acs.jpclett.7b02192
[93]
Boyd C C, Shallcross R C, Moot T, et al. Overcoming redox reactions at perovskite-nickel oxide interfaces to boost voltages in perovskite solar cells. Joule, 2020, 4, 1759 doi: 10.1016/j.joule.2020.06.004
[94]
Wu T H, Wang Y B, Li X, et al. Efficient defect passivation for perovskite solar cells by controlling the electron density distribution of donor-π-acceptor molecules. Adv Energy Mater, 2019, 9, 1803766 doi: 10.1002/aenm.201803766
[95]
Matteocci F, Busby Y, Pireaux J J, et al. Interface and composition analysis on perovskite solar cells. ACS Appl Mater Interfaces, 2015, 7, 26176 doi: 10.1021/acsami.5b08038
[96]
Busby Y, Agresti A, Pescetelli S, et al. Aging effects in interface-engineered perovskite solar cells with 2D nanomaterials: A depth profile analysis. Mater Today Energy, 2018, 9, 1 doi: 10.1016/j.mtener.2018.04.005
[97]
Xu D, Hua X, Liu S C, et al. In situ and real-time ToF-SIMS analysis of light-induced chemical changes in perovskite CH3NH3PbI3. Chem Commun Camb Engl, 2018, 54, 5434 doi: 10.1039/C8CC01606B
[98]
Harvey S P, Li Z, Christians J A, et al. Probing perovskite inhomogeneity beyond the surface: TOF-SIMS analysis of halide perovskite photovoltaic devices. ACS Appl Mater Interfaces, 2018, 10, 28541 doi: 10.1021/acsami.8b07937
[99]
Harvey S P, Zhang F, Palmstrom A, et al. Mitigating measurement artifacts in TOF-SIMS analysis of perovskite solar cells. ACS Appl Mater Interfaces, 2019, 11, 30911 doi: 10.1021/acsami.9b09445
[100]
Lee M V, Raga S R, Kato Y, et al. Transamidation of dimethylformamide during alkylammonium lead triiodide film formation for perovskite solar cells. J Mater Res, 2017, 32, 45 doi: 10.1557/jmr.2016.272
[101]
Lin W C, Kovalsky A, Wang Y C, et al. Interpenetration of CH3NH3PbI3 and TiO2 improves perovskite solar cells while TiO2 expansion leads to degradation. Phys Chem Chem Phys, 2017, 19, 21407 doi: 10.1039/C7CP03116E
[102]
Yang B, Keum J, Ovchinnikova O S, et al. Deciphering halogen competition in organometallic halide perovskite growth. J Am Chem Soc, 2016, 138, 5028 doi: 10.1021/jacs.5b13254
[103]
Christians J A, Schulz P, Tinkham J S, et al. Tailored interfaces of unencapsulated perovskite solar cells for >1, 000 hour operational stability. Nat Energy, 2018, 3, 68 doi: 10.1038/s41560-017-0067-y
[104]
Kim J, Lee Y, Gil B, et al. A Cu2O–CuSCN nanocomposite as a hole-transport material of perovskite solar cells for enhanced carrier transport and suppressed interfacial degradation. ACS Appl Energy Mater, 2020, 3, 7572 doi: 10.1021/acsaem.0c01001
[105]
Tan F R, Tan H R, Saidaminov M I, et al. In situ back-contact passivation improves photovoltage and fill factor in perovskite solar cells. Adv Mater, 2019, 31, 1807435 doi: 10.1002/adma.201807435
[106]
Baloch A A B, Alharbi F H, Grancini G, et al. Analysis of photocarrier dynamics at interfaces in perovskite solar cells by time-resolved photoluminescence. J Phys Chem C, 2018, 122, 26805 doi: 10.1021/acs.jpcc.8b07069
[107]
Lv Y, Cai B, Wu Y H, et al. High performance perovskite solar cells using TiO2 nanospindles as ultrathin mesoporous layer. J Energy Chem, 2018, 27, 951 doi: 10.1016/j.jechem.2018.01.020
[108]
Guo D, Bartesaghi D, Wei H, et al. Photoluminescence from radiative surface states and excitons in methylammonium lead bromide perovskites. J Phys Chem Lett, 2017, 8, 4258 doi: 10.1021/acs.jpclett.7b01642
[109]
Zhu X J, Du M Y, Feng J S, et al. High-efficiency perovskite solar cells with imidazolium-based ionic liquid for surface passivation and charge transport. Angew Chem, 2021, 133, 4284 doi: 10.1002/ange.202010987
[110]
Yang C, Wang H, Miao Y, et al. Interfacial molecular doping and energy level alignment regulation for perovskite solar cells with efficiency exceeding 23%. Am Chem Soc, 2021, 6, 2690 doi: 10.1021/acsenergylett.1c01126
[111]
Kuo M Y, Spitha N, Hautzinger M P, et al. Distinct carrier transport properties across horizontally vs vertically oriented heterostructures of 2D/3D perovskites. J Am Chem Soc, 2021, 143, 4969 doi: 10.1021/jacs.0c10000
[112]
Pu Y C, Fan H C, Liu T W, et al. Methylamine lead bromide perovskite/protonated graphitic carbon nitride nanocomposites: Interfacial charge carrier dynamics and photocatalysis. J Mater Chem A, 2017, 5, 25438 doi: 10.1039/C7TA08190A
[113]
Nouri E, Mohammadi M R, Xu Z X, et al. Improvement of the photovoltaic parameters of perovskite solar cells using a reduced-graphene-oxide-modified titania layer and soluble copper phthalocyanine as a hole transporter. Phys Chem Chem Phys, 2018, 20, 2388 doi: 10.1039/C7CP04538G
[114]
Ramos F J, Jutteau S, Posada J, et al. Highly efficient MoO x-free semitransparent perovskite cell for 4 T tandem application improving the efficiency of commercially-available Al-BSF silicon. Sci Rep, 2018, 8, 16139 doi: 10.1038/s41598-018-34432-5
[115]
Zhang W H, Ding Y, Jiang Y, et al. Simultaneously enhanced Jsc and FF by employing two solution-processed interfacial layers for inverted planar perovskite solar cells. RSC Adv, 2017, 7, 39523 doi: 10.1039/C7RA07475A
[116]
Montcada N F, Marín-Beloqui J M, Cambarau W, et al. Analysis of photoinduced carrier recombination kinetics in flat and mesoporous lead perovskite solar cells. ACS Energy Lett, 2017, 2, 182 doi: 10.1021/acsenergylett.6b00600
[117]
Zhu L Z, Ye J J, Zhang X H, et al. Performance enhancement of perovskite solar cells using a La-doped BaSnO3 electron transport layer. J Mater Chem A, 2017, 5, 3675 doi: 10.1039/C6TA09689A
[118]
Ye T, Xing J, Petrović M, et al. Temperature effect of the compact TiO2 layer in planar perovskite solar cells: An interfacial electrical, optical and carrier mobility study. Sol Energy Mater Sol Cells, 2017, 163, 242 doi: 10.1016/j.solmat.2017.01.005
[119]
Serpetzoglou E, Konidakis I, Kakavelakis G, et al. Improved carrier transport in perovskite solar cells probed by femtosecond transient absorption spectroscopy. ACS Appl Mater Interfaces, 2017, 9, 43910 doi: 10.1021/acsami.7b15195
[120]
Dar M I, Franckevičius M, Arora N, et al. High photovoltage in perovskite solar cells: New physical insights from the ultrafast transient absorption spectroscopy. Chem Phys Lett, 2017, 683, 211 doi: 10.1016/j.cplett.2017.04.046
[121]
Gao Y B, Wu Y J, Liu Y, et al. Interface and grain boundary passivation for efficient and stable perovskite solar cells: The effect of terminal groups in hydrophobic fused benzothiadiazole-based organic semiconductors. Nanoscale Horizons, 2020, 5, 1574 doi: 10.1039/D0NH00374C
[122]
Wu W Q, Zhong J X, Liao J F, et al. Spontaneous surface/interface ligand-anchored functionalization for extremely high fill factor over 86% in perovskite solar cells. Nano Energy, 2020, 75, 104929 doi: 10.1016/j.nanoen.2020.104929
[123]
Ghosh D, Chaudhary D K, Ali M Y, et al. All-inorganic quantum dot assisted enhanced charge extraction across the interfaces of bulk organo-halide perovskites for efficient and stable pin-hole free perovskite solar cells. Chem Sci, 2019, 10, 9530 doi: 10.1039/C9SC01183H
[124]
Bera A, Bera A, Sheikh A D, et al. Fast crystallization and improved stability of perovskite solar cells with Zn2SnO4 electron transporting layer: Interface matters. ACS Appl Mater Interfaces, 2015, 7, 28404 doi: 10.1021/acsami.5b09182
[125]
Afroz M A, Aranda C A, Tailor N K, et al. Impedance spectroscopy for metal halide perovskite single crystals: Recent advances, challenges, and solutions. ACS Energy Lett, 2021, 6, 3275 doi: 10.1021/acsenergylett.1c01099
[126]
Jäger K, Sutter J, Hammerschmidt M, et al. Prospects of light management in perovskite/silicon tandem solar cells. Nanophotonics, 2021, 10, 1991 doi: 10.1515/nanoph-2020-0674
[127]
Chen B, Yu Z J, Manzoor S, et al. Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells. Joule, 2020, 4, 850 doi: 10.1016/j.joule.2020.01.008
[128]
Xu C Y, Hu W, Wang G, et al. Coordinated optical matching of a texture interface made from demixing blended polymers for high-performance inverted perovskite solar cells. ACS Nano, 2020, 14, 196 doi: 10.1021/acsnano.9b07594
[129]
Filipič M, Löper P, Niesen B, et al. CH3NH3PbI3 perovskite / silicon tandem solar cells: Characterization based optical simulations. Opt Express, 2015, 23, A263 doi: 10.1364/OE.23.00A263
[130]
Hossain M I, Saleque A M, Ahmed S, et al. Perovskite/perovskite planar tandem solar cells: A comprehensive guideline for reaching energy conversion efficiency beyond 30%. Nano Energy, 2021, 79, 105400 doi: 10.1016/j.nanoen.2020.105400
[131]
Liu Y, Zhang H, Zhang Y P, et al. Influence of hole transport layers on internal absorption, charge recombination and collection in HC(NH2)2PbI3 perovskite solar cells. J Mater Chem A, 2018, 6, 7922 doi: 10.1039/C8TA01617H
[132]
Bisquert J, Janssen M. From frequency domain to time transient methods for halide perovskite solar cells: The connections of IMPS, IMVS, TPC, and TPV. J Phys Chem Lett, 2021, 12, 7964 doi: 10.1021/acs.jpclett.1c02065
[133]
Neukom M, Züfle S, Jenatsch S, et al. Opto-electronic characterization of third-generation solar cells. Sci Technol Adv Mater, 2018, 19, 291 doi: 10.1080/14686996.2018.1442091
[134]
Saranin D, Gostischev P, Tatarinov D, et al. Copper iodide interlayer for improved charge extraction and stability of inverted perovskite solar cells. Materials, 2019, 12, 1406 doi: 10.3390/ma12091406
[135]
Pockett A, Carnie M J. Ionic influences on recombination in perovskite solar cells. ACS Energy Lett, 2017, 2, 1683 doi: 10.1021/acsenergylett.7b00490
[136]
O’Regan B C, Barnes P R F, Li X E, et al. Optoelectronic studies of methylammonium lead iodide perovskite solar cells with mesoporous TiO2: Separation of electronic and chemical charge storage, understanding two recombination lifetimes, and the evolution of band offsets during J–V hysteresis. J Am Chem Soc, 2015, 137, 5087 doi: 10.1021/jacs.5b00761
[137]
Sandberg O J, Tvingstedt K, Meredith P, et al. Theoretical perspective on transient photovoltage and charge extraction techniques. J Phys Chem C, 2019, 123, 14261 doi: 10.1021/acs.jpcc.9b03133
[138]
Lei Y, Gu L Y, He W W, et al. Intrinsic charge carrier dynamics and device stability of perovskite/ZnO mesostructured solar cells in moisture. J Mater Chem A, 2016, 4, 5474 doi: 10.1039/C6TA00614K
[139]
Chen H, Li K M, Liu H, et al. Dependence of power conversion properties of hole-conductor-free mesoscopic perovskite solar cells on the loading of perovskite crystallites. Org Electron, 2018, 61, 119 doi: 10.1016/j.orgel.2018.06.054
[140]
Tan F R, Qu S C, Jiang Q W, et al. Interpenetrated inorganic hybrids for efficiency enhancement of PbS quantum dot solar cells. Adv Energy Mater, 2014, 4, 1400512 doi: 10.1002/aenm.201400512
[141]
Hwang D, Jin J S, Lee H, et al. Hierarchically structured Zn2SnO4 nanobeads for high-efficiency dye-sensitized solar cells. Sci Rep, 2014, 4, 7353 doi: 10.1038/srep07353
[142]
Mora-Seró I, Bisquert J, Fabregat-Santiago F, et al. Implications of the negative capacitance observed at forward bias in nanocomposite and polycrystalline solar cells. Nano Lett, 2006, 6, 640 doi: 10.1021/nl052295q
[143]
Boix P P, Lee Y H, Fabregat-Santiago F, et al. From flat to nanostructured photovoltaics: Balance between thickness of the absorber and charge screening in sensitized solar cells. ACS Nano, 2012, 6, 873 doi: 10.1021/nn204382k
[144]
Bag M, Renna L A, Adhikari R Y, et al. Kinetics of ion transport in perovskite active layers and its implications for active layer stability. J Am Chem Soc, 2015, 137, 13130 doi: 10.1021/jacs.5b08535
[145]
Chen X Q, Shirai Y, Yanagida M, et al. Effect of light and voltage on electrochemical impedance spectroscopy of perovskite solar cells: An empirical approach based on modified randles circuit. J Phys Chem C, 2019, 123, 3968 doi: 10.1021/acs.jpcc.8b10712
[146]
Tan F R, Saidaminov M I, Tan H R, et al. Dual coordination of Ti and Pb using bilinkable ligands improves perovskite solar cell performance and stability. Adv Funct Mater, 2020, 30, 2005155 doi: 10.1002/adfm.202005155
[147]
Yi H M, Wang D, Mahmud M A, et al. Bilayer SnO2 as electron transport layer for highly efficient perovskite solar cells. ACS Appl Energy Mater, 2018, 1, 6027 doi: 10.1021/acsaem.8b01076
[148]
Le Corre V M, Duijnstee E A, El Tambouli O, et al. Revealing charge carrier mobility and defect densities in metal halide perovskites via space-charge-limited current measurements. ACS Energy Lett, 2021, 6, 1087 doi: 10.1021/acsenergylett.0c02599
[149]
Khan M T, Almohammedi A, Kazim S, et al. Electrical methods to elucidate charge transport in hybrid perovskites thin films and devices. Chem Rec, 2020, 20, 452 doi: 10.1002/tcr.201900055
[150]
Liu N, Liu P, Zhou H, et al. Understanding the defect properties of quasi-2D halide perovskites for photovoltaic applications. J Phys Chem Lett, 2020, 11, 3521 doi: 10.1021/acs.jpclett.0c00772
[151]
Shi D, Adinolfi V, Comin R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 2015, 347, 519 doi: 10.1126/science.aaa2725
[152]
Zhu P C, Gu S, Luo X, et al. Simultaneous contact and grain-boundary passivation in planar perovskite solar cells using SnO2-KCl composite electron transport layer. Adv Energy Mater, 2020, 10, 1903083 doi: 10.1002/aenm.201903083
[153]
Rothmann M U, Li W, Etheridge J, et al. Microstructural characterisations of perovskite solar cells - from grains to interfaces: Techniques, features, and challenges. Adv Energy Mater, 2017, 7, 1700912 doi: 10.1002/aenm.201700912
[154]
Klein-Kedem N, Cahen D, Hodes G. Effects of light and electron beam irradiation on halide perovskites and their solar cells. Acc Chem Res, 2016, 49, 347 doi: 10.1021/acs.accounts.5b00469
[155]
Edri E, Kirmayer S, Mukhopadhyay S, et al. Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3– xCl x perovskite solar cells. Nat Commun, 2014, 5, 3461 doi: 10.1038/ncomms4461
[156]
Fan R D, Huang Y, Wang L G, et al. The progress of interface design in perovskite-based solar cells. Adv Energy Mater, 2016, 6, 1600460 doi: 10.1002/aenm.201600460
[157]
Edri E, Kirmayer S, Henning A, et al. Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor). Nano Lett, 2014, 14, 1000 doi: 10.1021/nl404454h
[158]
Yang W S, Park B W, Jung E H, et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science, 2017, 356, 1376 doi: 10.1126/science.aan2301
[159]
Shi J J, Xu X, Li D M, et al. Interfaces in perovskite solar cells. Small, 2015, 11, 2472 doi: 10.1002/smll.201403534
[160]
Wang R, Xue J, Wang K L, et al. Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science, 2019, 366, 1509 doi: 10.1126/science.aay9698
Fig. 1.  (Color online) Efficiency evolution of different solar cells. Interface engineering has recently played an increasingly important role in obtaining a higher efficiency for each cell.

Fig. 2.  (Color online) (a) Perovskite crystal structure, Schottky defect, Frenkel defect and ion migration through interfaces. (b) Schematic illustration of photo-generation and, diffusion and transfer of charges at interfaces, trap-assisted nonradiative recombination (due to intrinsic defects and impurities at interfaces) and back transfer and interface recombination. (c) Energy band alignment of some typical materials used in perovskite solar cells.

Fig. 3.  (Color online) Interface material characterization methods. (a) Cross-section SEM image of PSCs showing excess of PbI2 at interfaces. Reproduced with permission from Ref. [84]. Copyright 2019, ACS. (b) Photoluminescence mapping image showing the crystallization of perovskite from the pre-embedded perovskite seeds. Reproduced with permission from Ref. [89]. Copyright 2018, Nature. (c) AFM image of TiO2. Reproduced with permission from Ref. [90]. Copyright 2020, RSC. (d) Cross-sectional HRTEM imagewide band gap perovskite near the surface. Scale bars: 1 μm. Reproduced with permission from Ref. [91]. Copyright 2019, Nature. (e) XPS depth profiles for cross-sectional characterization. Reproduced with permission from Ref. [95]. Copyright 2015, ACS. (f) and (g) Schematic illustration and measurement results from TOF-SIMS characterization. Reproduced with permission from Ref. [103]. Copyright 2018, Nature.

Fig. 4.  (Color online) (a) Steady state and (b) time resolved photoluminescence (PL) spectra of perovskite films with different back contact layers. Reproduced with permission from Ref. [105]. Copyright 2018, Wiley. (c) Transmission (ΔT/T) spectra of devices. Reproduced with permission from Ref. [122]. Copyright 2020, ELSEVIER. (d) Transient absorption kinetics of perovskite films with different substrates. Reproduced with permission from Ref. [124]. Copyright 2015, ACS. (e) Ultraviolet photoelectron spectroscopy (UPS) spectra showing the energy-level alignment of the interfaces. Reproduced with permission from Ref. [125]. Copyright 2020, Wiley. (f) Reflectivity spectra of perovskite films on textured substrates. Reproduced with permission from Ref. [128]. Copyright 2019, ACS.

Fig. 5.  (Color online) (a) Transient photocurrent spectra of perovskite films with different contact thin layers. Reproduced with permission from Ref. [105]. Copyright 2019, Wiley. The energy-level alignments at interface are also given for comparison. Reproduced with permission from Ref. [134]. Copyright 2019, Wiley. (b) Transient photovoltage spectra of perovskite films with different TiO2 ETL. The inset shows the contact passivation of perovskite by interfacial Cl. Reproduced with permission from Ref. [60]. Copyright 2017, Science. (c) Charge transfer recombination resistance at different bias voltages in electrochemical impedance spectrum measurement. Reproduced with permission from Ref. [146]. Copyright 2020, Wiley. (d) Space-charge-limited current (SCLC) characterization of perovskite solar cells with different SnO2 ETLs. Reproduced with permission from Ref. [153]. Copyright 2020, Wiley. (e) Electron beam induced current (EBIC) measurement of the current mapping at cross-section interfaces. Reproduced with permission from Ref. [160]. Copyright 2019, Science.

[1]
Dullweber T, Stöhr M, Kruse C, et al. Evolutionary PERC+ solar cell efficiency projection towards 24% evaluating shadow-mask-deposited poly-Si fingers below the Ag front contact as next improvement step. Sol Energy Mater Sol Cells, 2020, 212, 110586 doi: 10.1016/j.solmat.2020.110586
[2]
Yu J, Liao M D, Yan D, et al. Activating and optimizing evaporation-processed magnesium oxide passivating contact for silicon solar cells. Nano Energy, 2019, 62, 181 doi: 10.1016/j.nanoen.2019.05.015
[3]
Allen T G, Bullock J, Yang X B, et al. Passivating contacts for crystalline silicon solar cells. Nat Energy, 2019, 4, 914 doi: 10.1038/s41560-019-0463-6
[4]
Yoshikawa K, Kawasaki H, Yoshida W, et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat Energy, 2017, 2, 1 doi: 10.1038/nenergy.2017.32
[5]
Kato T, Wu J L, Hirai Y, et al. Record efficiency for thin-film polycrystalline solar cells up to 22.9% achieved by Cs-treated Cu(In, Ga)(Se, S)2. IEEE J Photovolt, 2019, 9, 325 doi: 10.1109/JPHOTOV.2018.2882206
[6]
Metzger W K, Grover S, Lu D, et al. Exceeding 20% efficiency with in situ group V doping in polycrystalline CdTe solar cells. Nat Energy, 2019, 4, 837 doi: 10.1038/s41560-019-0446-7
[7]
Burst J M, Duenow J N, Albin D S, et al. CdTe solar cells with open-circuit voltage breaking the 1 V barrier. Nat Energy, 2016, 1, 16015 doi: 10.1038/nenergy.2016.15
[8]
Green M A, Hishikawa Y, Dunlop E D, et al. Solar cell efficiency tables (Version 53). Prog Photovolt: Res Appl, 2019, 27, 3 doi: 10.1002/pip.3102
[9]
Jeong M, Choi I W, Go E M, et al. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science, 2020, 369, 1615 doi: 10.1126/science.abb7167
[10]
Han T H, Tan S, Xue J J, et al. Interface and defect engineering for metal halide perovskite optoelectronic devices. Adv Mater, 2019, 31, 1803515 doi: 10.1002/adma.201803515
[11]
Bai Y, Meng X Y, Yang S H. Interface engineering for highly efficient and stable planar p-i-n perovskite solar cells. Adv Energy Mater, 2018, 8, 1701883 doi: 10.1002/aenm.201701883
[12]
Schulz P, Cahen D, Kahn A. Halide perovskites: Is it all about the interfaces. Chem Rev, 2019, 119, 3349 doi: 10.1021/acs.chemrev.8b00558
[13]
Zhang F, Zhu K. Additive engineering for efficient and stable perovskite solar cells. Adv Energy Mater, 2020, 10, 1902579 doi: 10.1002/aenm.201902579
[14]
Zuo C T, Bolink H J, Han H W, et al. Advances in perovskite solar cells. Adv Sci, 2016, 3, 1500324 doi: 10.1002/advs.201500324
[15]
Jeon N J, Na H, Jung E H, et al. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat Energy, 2018, 3, 682 doi: 10.1038/s41560-018-0200-6
[16]
Jiang Q, Zhao Y, Zhang X W, et al. Surface passivation of perovskite film for efficient solar cells. Nat Photonics, 2019, 13, 460 doi: 10.1038/s41566-019-0398-2
[17]
Yang G, Ren Z W, Liu K, et al. Stable and low-photovoltage-loss perovskite solar cells by multifunctional passivation. Nat Photonics, 2021, 15, 681 doi: 10.1038/s41566-021-00829-4
[18]
Shao S Y, Loi M A. The role of the interfaces in perovskite solar cells. Adv Mater Interfaces, 2020, 7, 1901469 doi: 10.1002/admi.201901469
[19]
Miao Y W, Zheng M M, Wang H X, et al. In-situ secondary annealing treatment assisted effective surface passivation of shallow defects for efficient perovskite solar cells. J Power Sources, 2021, 492, 229621 doi: 10.1016/j.jpowsour.2021.229621
[20]
Wang P, Cai F, Yang L, et al. Eliminating light-soaking instability in planar heterojunction perovskite solar cells by interfacial modifications. ACS Appl Mater Interfaces, 2018, 10, 33144 doi: 10.1021/acsami.8b08958
[21]
Zheng F, Wen X M, Bu T L, et al. Slow response of carrier dynamics in perovskite interface upon illumination. ACS Appl Mater Interfaces, 2018, 10, 31452 doi: 10.1021/acsami.8b13932
[22]
Chen W, Zhou Y C, Chen G C, et al. Alkali chlorides for the suppression of the interfacial recombination in inverted planar perovskite solar cells. Adv Energy Mater, 2019, 9, 1803872 doi: 10.1002/aenm.201803872
[23]
Xiong S B, Hao T, Sun Y Y, et al. Defect passivation by nontoxic biomaterial yields 21% efficiency perovskite solar cells. J Energy Chem, 2021, 55, 265 doi: 10.1016/j.jechem.2020.06.061
[24]
Sherkar T S, Momblona C, Gil-Escrig L, et al. Recombination in perovskite solar cells: Significance of grain boundaries, interface traps, and defect ions. ACS Energy Lett, 2017, 2, 1214 doi: 10.1021/acsenergylett.7b00236
[25]
Leguy A M A, Hu Y H, Campoy-Quiles M, et al. Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells. Chem Mater, 2015, 27, 3397 doi: 10.1021/acs.chemmater.5b00660
[26]
Deng F, Li X T, Lv X, et al. Low-temperature processing all-inorganic carbon-based perovskite solar cells up to 11.78% efficiency via alkali hydroxides interfacial engineering. ACS Appl Energy Mater, 2020, 3, 401 doi: 10.1021/acsaem.9b01652
[27]
Wu J H, Shi J J, Li Y M, et al. Quantifying the interface defect for the stability origin of perovskite solar cells. Adv Energy Mater, 2019, 9, 1901352 doi: 10.1002/aenm.201901352
[28]
Wu T T, Zhen C, Zhu H Z, et al. Gradient Sn-doped heteroepitaxial film of faceted rutile TiO2 as an electron selective layer for efficient perovskite solar cells. ACS Appl Mater Interfaces, 2019, 11, 19638 doi: 10.1021/acsami.9b04308
[29]
Wang G X, Wang L P, Qiu J H, et al. In situ passivation on rear perovskite interface for efficient and stable perovskite solar cells. ACS Appl Mater Interfaces, 2020, 12, 7690 doi: 10.1021/acsami.9b18572
[30]
Hsieh H C, Hsiow C Y, Lin K F, et al. Analysis of defects and traps in N–I–P layered-structure of perovskite solar cells by charge-based deep level transient spectroscopy (Q-DLTS). J Phys Chem C, 2018, 122, 17601 doi: 10.1021/acs.jpcc.8b01949
[31]
Liu Z H, Qiu L B, Ono L K, et al. A holistic approach to interface stabilization for efficient perovskite solar modules with over 2, 000-hour operational stability. Nat Energy, 2020, 5, 596 doi: 10.1038/s41560-020-0653-2
[32]
Mahapatra A, Prochowicz D, Tavakoli M M, et al. A review of aspects of additive engineering in perovskite solar cells. J Mater Chem A, 2020, 8, 27 doi: 10.1039/C9TA07657C
[33]
Cao S L, Wang H X, Li H Y, et al. Critical role of interface contact modulation in realizing low-temperature fabrication of efficient and stable CsPbIBr2 perovskite solar cells. Chem Eng J, 2020, 394, 124903 doi: 10.1016/j.cej.2020.124903
[34]
Tavakoli M M, Tavakoli R, Yadav P, et al. A graphene/ZnO electron transfer layer together with perovskite passivation enables highly efficient and stable perovskite solar cells. J Mater Chem A, 2019, 7, 679 doi: 10.1039/C8TA10857A
[35]
Zheng X P, Hou Y, Bao C X, et al. Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat Energy, 2020, 5, 131 doi: 10.1038/s41560-019-0538-4
[36]
Wu Z F, Liu Z H, Hu Z H, et al. Highly efficient and stable perovskite solar cells via modification of energy levels at the perovskite/carbon electrode interface. Adv Mater, 2019, 31, 1804284 doi: 10.1002/adma.201804284
[37]
Tavakoli M M, Saliba M, Yadav P, et al. Synergistic crystal and interface engineering for efficient and stable perovskite photovoltaics. Adv Energy Mater, 2019, 9, 1802646 doi: 10.1002/aenm.201802646
[38]
Yoo J J, Wieghold S, Sponseller M C, et al. An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss. Energy Environ Sci, 2019, 12, 2192 doi: 10.1039/C9EE00751B
[39]
Boyd C C, Cheacharoen R, Leijtens T, et al. Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem Rev, 2019, 119, 3418 doi: 10.1021/acs.chemrev.8b00336
[40]
Pearson A J, Eperon G E, Hopkinson P E, et al. Oxygen degradation in mesoporous Al2O3/CH3NH3PbI3− xCl x perovskite solar cells: Kinetics and mechanisms. Adv Energy Mater, 2016, 6, 1600014 doi: 10.1002/aenm.201600014
[41]
Noel N K, Stranks S D, Abate A, et al. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ Sci, 2014, 7, 3061 doi: 10.1039/C4EE01076K
[42]
Seo J Y, Kim H S, Akin S, et al. Novel p-dopant toward highly efficient and stable perovskite solar cells. Energy Environ Sci, 2018, 11, 2985 doi: 10.1039/C8EE01500G
[43]
Chen J Z, Park N G. Inorganic hole transporting materials for stable and high efficiency perovskite solar cells. J Phys Chem C, 2018, 122, 14039 doi: 10.1021/acs.jpcc.8b01177
[44]
Berhe T A, Su W N, Chen C H, et al. Organometal halide perovskite solar cells: Degradation and stability. Energy Environ Sci, 2016, 9, 323 doi: 10.1039/C5EE02733K
[45]
Niu G D, Guo X D, Wang L D. Review of recent progress in chemical stability of perovskite solar cells. J Mater Chem A, 2015, 3, 8970 doi: 10.1039/C4TA04994B
[46]
Niu T Q, Lu J, Munir R, et al. Stable high-performance perovskite solar cells via grain boundary passivation. Adv Mater, 2018, 30, 1706576 doi: 10.1002/adma.201706576
[47]
Guo Q, Yuan F, Zhang B, et al. Passivation of the grain boundaries of CH3NH3PbI3 using carbon quantum dots for highly efficient perovskite solar cells with excellent environmental stability. Nanoscale, 2018, 11, 115 doi: 10.1039/C8NR08295B
[48]
Yang J, Siempelkamp B D, Liu D, et al. Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano, 2015, 9, 1955 doi: 10.1021/nn506864k
[49]
Song Z N, Abate A, Watthage S C, et al. Perovskite solar cell stability in humid air: Partially reversible phase transitions in the PbI2-CH3NH3I-H2O system. Adv Energy Mater, 2016, 6, 1600846 doi: 10.1002/aenm.201600846
[50]
Niu G D, Li W Z, Meng F Q, et al. Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J Mater Chem A, 2014, 2, 705 doi: 10.1039/C3TA13606J
[51]
Chen Y, Li N, Wang L, et al. Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells. Nat Commun, 2019, 10, 1112 doi: 10.1038/s41467-019-09093-1
[52]
Zheng L L, Chung Y H, Ma Y Z, et al. A hydrophobic hole transporting oligothiophene for planar perovskite solar cells with improved stability. Chem Commun, 2014, 50, 11196 doi: 10.1039/C4CC04680C
[53]
Li X D, Ke S Z, Feng X X, et al. Enhancing the stability of perovskite solar cells through cross-linkable and hydrogen bonding multifunctional additives. J Mater Chem A, 2021, 9, 12684 doi: 10.1039/d1ta01572a
[54]
Yang J, Liu C, Cai C S, et al. High-performance perovskite solar cells with excellent humidity and thermo-stability via fluorinated perylenediimide. Adv Energy Mater, 2019, 9, 1900198 doi: 10.1002/aenm.201900198
[55]
Wu W Q, Yang Z, Rudd P N, et al. Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells. Sci Adv, 2019, 5, eaav8925 doi: 10.1126/sciadv.aav8925
[56]
Zheng X P, Troughton J, Gasparini N, et al. Quantum dots supply bulk- and surface-passivation agents for efficient and stable perovskite solar cells. Joule, 2019, 3, 1963 doi: 10.1016/j.joule.2019.05.005
[57]
Yu B, Zuo C, Shi J, et al. Defect engineering on all-inorganic perovskite solar cells for high efficiency. J Semicond, 2021, 42, 050203 doi: 10.1088/1674-4926/42/5/050203
[58]
Cheng M, Zuo C, Wu Y, et al. Charge-transport layer engineering in perovskite solar cells. Sci Bull, 2020, 65, 1237 doi: 10.1016/j.scib.2020.04.021
[59]
Zhang J, Hou S X, Li R J, et al. I/P interface modification for stable and efficient perovskite solar cells. J Semicond, 2020, 41, 052202 doi: 10.1088/1674-4926/41/5/052202
[60]
Tan H, Jain A, Voznyy O, et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science, 2017, 355, 722 doi: 10.1126/science.aai9081
[61]
Tan W L, Choo Y Y, Huang W C, et al. Oriented attachment as the mechanism for microstructure evolution in chloride-derived hybrid perovskite thin films. ACS Appl Mater Interfaces, 2019, 11, 39930 doi: 10.1021/acsami.9b13259
[62]
Ren J, Luo Q, Hou Q Z, et al. Suppressing charge recombination and ultraviolet light degradation of perovskite solar cells using silicon oxide passivation. ChemElectroChem, 2019, 6, 3167 doi: 10.1002/celc.201900688
[63]
Ha J, Kim H, Lee H, et al. Device architecture for efficient, low-hysteresis flexible perovskite solar cells: Replacing TiO2 with C60 assisted by polyethylenimine ethoxylated interfacial layers. Sol Energy Mater Sol Cells, 2017, 161, 338 doi: 10.1016/j.solmat.2016.11.031
[64]
Zhang X, Ma S, You J B, et al. Tailoring molecular termination for thermally stable perovskite solar cells. J Semicond, 2021, 42, 112201 doi: 10.1088/1674-4926/42/11/112201
[65]
Shin S S, Suk J H, Kang B J, et al. Energy-level engineering of the electron transporting layer for improving open-circuit voltage in dye and perovskite-based solar cells. Energy Environ Sci, 2019, 12, 958 doi: 10.1039/C8EE03672A
[66]
Idrissi S, Ziti S, Labrim H, et al. Band gaps of the solar perovskites photovoltaic CsXCl3 (X = Sn, Pb or Ge). Mater Sci Semicond Process, 2021, 122, 105484 doi: 10.1016/j.mssp.2020.105484
[67]
Zhang L H, Zhang X, Lu G. Band alignment in two-dimensional halide perovskite heterostructures: Type I or type II. J Phys Chem Lett, 2020, 11, 2910 doi: 10.1021/acs.jpclett.0c00376
[68]
Liao C S, Yu Z L, He P B, et al. Effects of composition modulation on the type of band alignments for Pd2Se3/CsSnBr3 van der Waals heterostructure: A transition from type I to type II. J Power Sources, 2020, 478, 229078 doi: 10.1016/j.jpowsour.2020.229078
[69]
Raoui Y, Ez-Zahraouy H, Kazim S, et al. Energy level engineering of charge selective contact and halide perovskite by modulating band offset: Mechanistic insights. J Energy Chem, 2021, 54, 822 doi: 10.1016/j.jechem.2020.06.030
[70]
Lim K G, Ahn S, Kim Y H, et al. Universal energy level tailoring of self-organized hole extraction layers in organic solar cells and organic–inorganic hybrid perovskite solar cells. Energy Environ Sci, 2016, 9, 932 doi: 10.1039/C5EE03560K
[71]
Begum R, Parida M R, Abdelhady A L, et al. Engineering interfacial charge transfer in CsPbBr3 perovskite nanocrystals by heterovalent doping. J Am Chem Soc, 2017, 139, 731 doi: 10.1021/jacs.6b09575
[72]
Meggiolaro D, Mosconi E, Proppe A H, et al. Energy level tuning at the MAPbI3 perovskite/contact interface using chemical treatment. ACS Energy Lett, 2019, 4, 2181 doi: 10.1021/acsenergylett.9b01584
[73]
Choi H, Jeong J, Kim H B, et al. Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy, 2014, 7, 80 doi: 10.1016/j.nanoen.2014.04.017
[74]
Du K Z, Wang X M, Han Q W, et al. Heterovalent B-site co-alloying approach for halide perovskite bandgap engineering. ACS Energy Lett, 2017, 2, 2486 doi: 10.1021/acsenergylett.7b00824
[75]
Unger E L, Kegelmann L, Suchan K, et al. Roadmap and roadblocks for the band gap tunability of metal halide perovskites. J Mater Chem A, 2017, 5, 11401 doi: 10.1039/C7TA00404D
[76]
Ding X D, Wang H X, Chen C, et al. Passivation functionalized phenothiazine-based hole transport material for highly efficient perovskite solar cell with efficiency exceeding 22%. Chem Eng J, 2021, 410, 128328 doi: 10.1016/j.cej.2020.128328
[77]
Xie L S, Cao Z Y, Wang J W, et al. Improving energy level alignment by adenine for efficient and stable perovskite solar cells. Nano Energy, 2020, 74, 104846 doi: 10.1016/j.nanoen.2020.104846
[78]
Zhang Z H, Li J, Fang Z M, et al. Adjusting energy level alignment between HTL and CsPbI2Br to improve solar cell efficiency. J Semicond, 2021, 42, 030501 doi: 10.1088/1674-4926/42/3/030501
[79]
Cao Q, Li Z, Han J, et al. Electron transport bilayer with cascade energy alignment for efficient perovskite solar cells. Sol RRL, 2019, 3, 1900333 doi: 10.1002/solr.201900333
[80]
Schulz P, Edri E, Kirmayer S, et al. Interface energetics in organo-metal halide perovskite-based photovoltaic cells. Energy Environ Sci, 2014, 7, 1377 doi: 10.1039/c4ee00168k
[81]
Guo X, McCleese C, Kolodziej C, et al. Identification and characterization of the intermediate phase in hybrid organic–inorganic MAPbI3 perovskite. Dalton Trans, 2016, 45, 3806 doi: 10.1039/C5DT04420K
[82]
Shkir M, Khan M T, AlFaify S. Novel Nd-doping effect on structural, morphological, optical, and electrical properties of facilely fabricated PbI2 thin films applicable to optoelectronic devices. Appl Nanosci, 2019, 9, 1417 doi: 10.1007/s13204-019-00983-w
[83]
Yang L, Wang X, Mai X, et al. Constructing efficient mixed-ion perovskite solar cells based on TiO2 nanorod array. J Colloid Interface Sci, 2019, 534, 459 doi: 10.1016/j.jcis.2018.09.045
[84]
Chen Y, Meng Q, Xiao Y, et al. Mechanism of PbI2 in situ passivated perovskite films for enhancing the performance of perovskite solar cells. ACS Appl Mater Interfaces, 2019, 11, 44101 doi: 10.1021/acsami.9b13648
[85]
Cui Q, Zhao X C, Lin H, et al. Improved efficient perovskite solar cells based on Ta-doped TiO2 nanorod arrays. Nanoscale, 2017, 9, 18897 doi: 10.1039/C7NR05687G
[86]
Liu J M, Zhu L Q, Xiang S S, et al. Cs-doped TiO2 nanorod array enhances electron injection and transport in carbon-based CsPbI3 perovskite solar cells. ACS Sustain Chem Eng, 2019, 7, 16927 doi: 10.1021/acssuschemeng.9b04772
[87]
Wu S F, Chen C, Wang J M, et al. Controllable preparation of rutile TiO2 nanorod array for enhanced photovoltaic performance of perovskite solar cells. ACS Appl Energy Mater, 2018, 1, 1649 doi: 10.1021/acsaem.8b00106
[88]
Chandrasekhar P S, Dubey A, Qiao Q Q. High efficiency perovskite solar cells using nitrogen-doped graphene/ZnO nanorod composite as an electron transport layer. Sol Energy, 2020, 197, 78 doi: 10.1016/j.solener.2019.12.062
[89]
Zhao Y, Tan H, Yuan H, et al. Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nat Commun, 2018, 9, 1607 doi: 10.1038/s41467-018-04029-7
[90]
Nukunudompanich M, Budiutama G, Suzuki K, et al. Dominant effect of the grain size of the MAPbI3 perovskite controlled by the surface roughness of TiO2 on the performance of perovskite solar cells. CrystEngComm, 2020, 22, 2718 doi: 10.1039/D0CE00169D
[91]
Jung E H, Jeon N J, Park E Y, et al. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature, 2019, 567, 511 doi: 10.1038/s41586-019-1036-3
[92]
Ravi V K, Santra P K, Joshi N, et al. Origin of the substitution mechanism for the binding of organic ligands on the surface of CsPbBr3 perovskite nanocubes. J Phys Chem Lett, 2017, 8, 4988 doi: 10.1021/acs.jpclett.7b02192
[93]
Boyd C C, Shallcross R C, Moot T, et al. Overcoming redox reactions at perovskite-nickel oxide interfaces to boost voltages in perovskite solar cells. Joule, 2020, 4, 1759 doi: 10.1016/j.joule.2020.06.004
[94]
Wu T H, Wang Y B, Li X, et al. Efficient defect passivation for perovskite solar cells by controlling the electron density distribution of donor-π-acceptor molecules. Adv Energy Mater, 2019, 9, 1803766 doi: 10.1002/aenm.201803766
[95]
Matteocci F, Busby Y, Pireaux J J, et al. Interface and composition analysis on perovskite solar cells. ACS Appl Mater Interfaces, 2015, 7, 26176 doi: 10.1021/acsami.5b08038
[96]
Busby Y, Agresti A, Pescetelli S, et al. Aging effects in interface-engineered perovskite solar cells with 2D nanomaterials: A depth profile analysis. Mater Today Energy, 2018, 9, 1 doi: 10.1016/j.mtener.2018.04.005
[97]
Xu D, Hua X, Liu S C, et al. In situ and real-time ToF-SIMS analysis of light-induced chemical changes in perovskite CH3NH3PbI3. Chem Commun Camb Engl, 2018, 54, 5434 doi: 10.1039/C8CC01606B
[98]
Harvey S P, Li Z, Christians J A, et al. Probing perovskite inhomogeneity beyond the surface: TOF-SIMS analysis of halide perovskite photovoltaic devices. ACS Appl Mater Interfaces, 2018, 10, 28541 doi: 10.1021/acsami.8b07937
[99]
Harvey S P, Zhang F, Palmstrom A, et al. Mitigating measurement artifacts in TOF-SIMS analysis of perovskite solar cells. ACS Appl Mater Interfaces, 2019, 11, 30911 doi: 10.1021/acsami.9b09445
[100]
Lee M V, Raga S R, Kato Y, et al. Transamidation of dimethylformamide during alkylammonium lead triiodide film formation for perovskite solar cells. J Mater Res, 2017, 32, 45 doi: 10.1557/jmr.2016.272
[101]
Lin W C, Kovalsky A, Wang Y C, et al. Interpenetration of CH3NH3PbI3 and TiO2 improves perovskite solar cells while TiO2 expansion leads to degradation. Phys Chem Chem Phys, 2017, 19, 21407 doi: 10.1039/C7CP03116E
[102]
Yang B, Keum J, Ovchinnikova O S, et al. Deciphering halogen competition in organometallic halide perovskite growth. J Am Chem Soc, 2016, 138, 5028 doi: 10.1021/jacs.5b13254
[103]
Christians J A, Schulz P, Tinkham J S, et al. Tailored interfaces of unencapsulated perovskite solar cells for >1, 000 hour operational stability. Nat Energy, 2018, 3, 68 doi: 10.1038/s41560-017-0067-y
[104]
Kim J, Lee Y, Gil B, et al. A Cu2O–CuSCN nanocomposite as a hole-transport material of perovskite solar cells for enhanced carrier transport and suppressed interfacial degradation. ACS Appl Energy Mater, 2020, 3, 7572 doi: 10.1021/acsaem.0c01001
[105]
Tan F R, Tan H R, Saidaminov M I, et al. In situ back-contact passivation improves photovoltage and fill factor in perovskite solar cells. Adv Mater, 2019, 31, 1807435 doi: 10.1002/adma.201807435
[106]
Baloch A A B, Alharbi F H, Grancini G, et al. Analysis of photocarrier dynamics at interfaces in perovskite solar cells by time-resolved photoluminescence. J Phys Chem C, 2018, 122, 26805 doi: 10.1021/acs.jpcc.8b07069
[107]
Lv Y, Cai B, Wu Y H, et al. High performance perovskite solar cells using TiO2 nanospindles as ultrathin mesoporous layer. J Energy Chem, 2018, 27, 951 doi: 10.1016/j.jechem.2018.01.020
[108]
Guo D, Bartesaghi D, Wei H, et al. Photoluminescence from radiative surface states and excitons in methylammonium lead bromide perovskites. J Phys Chem Lett, 2017, 8, 4258 doi: 10.1021/acs.jpclett.7b01642
[109]
Zhu X J, Du M Y, Feng J S, et al. High-efficiency perovskite solar cells with imidazolium-based ionic liquid for surface passivation and charge transport. Angew Chem, 2021, 133, 4284 doi: 10.1002/ange.202010987
[110]
Yang C, Wang H, Miao Y, et al. Interfacial molecular doping and energy level alignment regulation for perovskite solar cells with efficiency exceeding 23%. Am Chem Soc, 2021, 6, 2690 doi: 10.1021/acsenergylett.1c01126
[111]
Kuo M Y, Spitha N, Hautzinger M P, et al. Distinct carrier transport properties across horizontally vs vertically oriented heterostructures of 2D/3D perovskites. J Am Chem Soc, 2021, 143, 4969 doi: 10.1021/jacs.0c10000
[112]
Pu Y C, Fan H C, Liu T W, et al. Methylamine lead bromide perovskite/protonated graphitic carbon nitride nanocomposites: Interfacial charge carrier dynamics and photocatalysis. J Mater Chem A, 2017, 5, 25438 doi: 10.1039/C7TA08190A
[113]
Nouri E, Mohammadi M R, Xu Z X, et al. Improvement of the photovoltaic parameters of perovskite solar cells using a reduced-graphene-oxide-modified titania layer and soluble copper phthalocyanine as a hole transporter. Phys Chem Chem Phys, 2018, 20, 2388 doi: 10.1039/C7CP04538G
[114]
Ramos F J, Jutteau S, Posada J, et al. Highly efficient MoO x-free semitransparent perovskite cell for 4 T tandem application improving the efficiency of commercially-available Al-BSF silicon. Sci Rep, 2018, 8, 16139 doi: 10.1038/s41598-018-34432-5
[115]
Zhang W H, Ding Y, Jiang Y, et al. Simultaneously enhanced Jsc and FF by employing two solution-processed interfacial layers for inverted planar perovskite solar cells. RSC Adv, 2017, 7, 39523 doi: 10.1039/C7RA07475A
[116]
Montcada N F, Marín-Beloqui J M, Cambarau W, et al. Analysis of photoinduced carrier recombination kinetics in flat and mesoporous lead perovskite solar cells. ACS Energy Lett, 2017, 2, 182 doi: 10.1021/acsenergylett.6b00600
[117]
Zhu L Z, Ye J J, Zhang X H, et al. Performance enhancement of perovskite solar cells using a La-doped BaSnO3 electron transport layer. J Mater Chem A, 2017, 5, 3675 doi: 10.1039/C6TA09689A
[118]
Ye T, Xing J, Petrović M, et al. Temperature effect of the compact TiO2 layer in planar perovskite solar cells: An interfacial electrical, optical and carrier mobility study. Sol Energy Mater Sol Cells, 2017, 163, 242 doi: 10.1016/j.solmat.2017.01.005
[119]
Serpetzoglou E, Konidakis I, Kakavelakis G, et al. Improved carrier transport in perovskite solar cells probed by femtosecond transient absorption spectroscopy. ACS Appl Mater Interfaces, 2017, 9, 43910 doi: 10.1021/acsami.7b15195
[120]
Dar M I, Franckevičius M, Arora N, et al. High photovoltage in perovskite solar cells: New physical insights from the ultrafast transient absorption spectroscopy. Chem Phys Lett, 2017, 683, 211 doi: 10.1016/j.cplett.2017.04.046
[121]
Gao Y B, Wu Y J, Liu Y, et al. Interface and grain boundary passivation for efficient and stable perovskite solar cells: The effect of terminal groups in hydrophobic fused benzothiadiazole-based organic semiconductors. Nanoscale Horizons, 2020, 5, 1574 doi: 10.1039/D0NH00374C
[122]
Wu W Q, Zhong J X, Liao J F, et al. Spontaneous surface/interface ligand-anchored functionalization for extremely high fill factor over 86% in perovskite solar cells. Nano Energy, 2020, 75, 104929 doi: 10.1016/j.nanoen.2020.104929
[123]
Ghosh D, Chaudhary D K, Ali M Y, et al. All-inorganic quantum dot assisted enhanced charge extraction across the interfaces of bulk organo-halide perovskites for efficient and stable pin-hole free perovskite solar cells. Chem Sci, 2019, 10, 9530 doi: 10.1039/C9SC01183H
[124]
Bera A, Bera A, Sheikh A D, et al. Fast crystallization and improved stability of perovskite solar cells with Zn2SnO4 electron transporting layer: Interface matters. ACS Appl Mater Interfaces, 2015, 7, 28404 doi: 10.1021/acsami.5b09182
[125]
Afroz M A, Aranda C A, Tailor N K, et al. Impedance spectroscopy for metal halide perovskite single crystals: Recent advances, challenges, and solutions. ACS Energy Lett, 2021, 6, 3275 doi: 10.1021/acsenergylett.1c01099
[126]
Jäger K, Sutter J, Hammerschmidt M, et al. Prospects of light management in perovskite/silicon tandem solar cells. Nanophotonics, 2021, 10, 1991 doi: 10.1515/nanoph-2020-0674
[127]
Chen B, Yu Z J, Manzoor S, et al. Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells. Joule, 2020, 4, 850 doi: 10.1016/j.joule.2020.01.008
[128]
Xu C Y, Hu W, Wang G, et al. Coordinated optical matching of a texture interface made from demixing blended polymers for high-performance inverted perovskite solar cells. ACS Nano, 2020, 14, 196 doi: 10.1021/acsnano.9b07594
[129]
Filipič M, Löper P, Niesen B, et al. CH3NH3PbI3 perovskite / silicon tandem solar cells: Characterization based optical simulations. Opt Express, 2015, 23, A263 doi: 10.1364/OE.23.00A263
[130]
Hossain M I, Saleque A M, Ahmed S, et al. Perovskite/perovskite planar tandem solar cells: A comprehensive guideline for reaching energy conversion efficiency beyond 30%. Nano Energy, 2021, 79, 105400 doi: 10.1016/j.nanoen.2020.105400
[131]
Liu Y, Zhang H, Zhang Y P, et al. Influence of hole transport layers on internal absorption, charge recombination and collection in HC(NH2)2PbI3 perovskite solar cells. J Mater Chem A, 2018, 6, 7922 doi: 10.1039/C8TA01617H
[132]
Bisquert J, Janssen M. From frequency domain to time transient methods for halide perovskite solar cells: The connections of IMPS, IMVS, TPC, and TPV. J Phys Chem Lett, 2021, 12, 7964 doi: 10.1021/acs.jpclett.1c02065
[133]
Neukom M, Züfle S, Jenatsch S, et al. Opto-electronic characterization of third-generation solar cells. Sci Technol Adv Mater, 2018, 19, 291 doi: 10.1080/14686996.2018.1442091
[134]
Saranin D, Gostischev P, Tatarinov D, et al. Copper iodide interlayer for improved charge extraction and stability of inverted perovskite solar cells. Materials, 2019, 12, 1406 doi: 10.3390/ma12091406
[135]
Pockett A, Carnie M J. Ionic influences on recombination in perovskite solar cells. ACS Energy Lett, 2017, 2, 1683 doi: 10.1021/acsenergylett.7b00490
[136]
O’Regan B C, Barnes P R F, Li X E, et al. Optoelectronic studies of methylammonium lead iodide perovskite solar cells with mesoporous TiO2: Separation of electronic and chemical charge storage, understanding two recombination lifetimes, and the evolution of band offsets during J–V hysteresis. J Am Chem Soc, 2015, 137, 5087 doi: 10.1021/jacs.5b00761
[137]
Sandberg O J, Tvingstedt K, Meredith P, et al. Theoretical perspective on transient photovoltage and charge extraction techniques. J Phys Chem C, 2019, 123, 14261 doi: 10.1021/acs.jpcc.9b03133
[138]
Lei Y, Gu L Y, He W W, et al. Intrinsic charge carrier dynamics and device stability of perovskite/ZnO mesostructured solar cells in moisture. J Mater Chem A, 2016, 4, 5474 doi: 10.1039/C6TA00614K
[139]
Chen H, Li K M, Liu H, et al. Dependence of power conversion properties of hole-conductor-free mesoscopic perovskite solar cells on the loading of perovskite crystallites. Org Electron, 2018, 61, 119 doi: 10.1016/j.orgel.2018.06.054
[140]
Tan F R, Qu S C, Jiang Q W, et al. Interpenetrated inorganic hybrids for efficiency enhancement of PbS quantum dot solar cells. Adv Energy Mater, 2014, 4, 1400512 doi: 10.1002/aenm.201400512
[141]
Hwang D, Jin J S, Lee H, et al. Hierarchically structured Zn2SnO4 nanobeads for high-efficiency dye-sensitized solar cells. Sci Rep, 2014, 4, 7353 doi: 10.1038/srep07353
[142]
Mora-Seró I, Bisquert J, Fabregat-Santiago F, et al. Implications of the negative capacitance observed at forward bias in nanocomposite and polycrystalline solar cells. Nano Lett, 2006, 6, 640 doi: 10.1021/nl052295q
[143]
Boix P P, Lee Y H, Fabregat-Santiago F, et al. From flat to nanostructured photovoltaics: Balance between thickness of the absorber and charge screening in sensitized solar cells. ACS Nano, 2012, 6, 873 doi: 10.1021/nn204382k
[144]
Bag M, Renna L A, Adhikari R Y, et al. Kinetics of ion transport in perovskite active layers and its implications for active layer stability. J Am Chem Soc, 2015, 137, 13130 doi: 10.1021/jacs.5b08535
[145]
Chen X Q, Shirai Y, Yanagida M, et al. Effect of light and voltage on electrochemical impedance spectroscopy of perovskite solar cells: An empirical approach based on modified randles circuit. J Phys Chem C, 2019, 123, 3968 doi: 10.1021/acs.jpcc.8b10712
[146]
Tan F R, Saidaminov M I, Tan H R, et al. Dual coordination of Ti and Pb using bilinkable ligands improves perovskite solar cell performance and stability. Adv Funct Mater, 2020, 30, 2005155 doi: 10.1002/adfm.202005155
[147]
Yi H M, Wang D, Mahmud M A, et al. Bilayer SnO2 as electron transport layer for highly efficient perovskite solar cells. ACS Appl Energy Mater, 2018, 1, 6027 doi: 10.1021/acsaem.8b01076
[148]
Le Corre V M, Duijnstee E A, El Tambouli O, et al. Revealing charge carrier mobility and defect densities in metal halide perovskites via space-charge-limited current measurements. ACS Energy Lett, 2021, 6, 1087 doi: 10.1021/acsenergylett.0c02599
[149]
Khan M T, Almohammedi A, Kazim S, et al. Electrical methods to elucidate charge transport in hybrid perovskites thin films and devices. Chem Rec, 2020, 20, 452 doi: 10.1002/tcr.201900055
[150]
Liu N, Liu P, Zhou H, et al. Understanding the defect properties of quasi-2D halide perovskites for photovoltaic applications. J Phys Chem Lett, 2020, 11, 3521 doi: 10.1021/acs.jpclett.0c00772
[151]
Shi D, Adinolfi V, Comin R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 2015, 347, 519 doi: 10.1126/science.aaa2725
[152]
Zhu P C, Gu S, Luo X, et al. Simultaneous contact and grain-boundary passivation in planar perovskite solar cells using SnO2-KCl composite electron transport layer. Adv Energy Mater, 2020, 10, 1903083 doi: 10.1002/aenm.201903083
[153]
Rothmann M U, Li W, Etheridge J, et al. Microstructural characterisations of perovskite solar cells - from grains to interfaces: Techniques, features, and challenges. Adv Energy Mater, 2017, 7, 1700912 doi: 10.1002/aenm.201700912
[154]
Klein-Kedem N, Cahen D, Hodes G. Effects of light and electron beam irradiation on halide perovskites and their solar cells. Acc Chem Res, 2016, 49, 347 doi: 10.1021/acs.accounts.5b00469
[155]
Edri E, Kirmayer S, Mukhopadhyay S, et al. Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3– xCl x perovskite solar cells. Nat Commun, 2014, 5, 3461 doi: 10.1038/ncomms4461
[156]
Fan R D, Huang Y, Wang L G, et al. The progress of interface design in perovskite-based solar cells. Adv Energy Mater, 2016, 6, 1600460 doi: 10.1002/aenm.201600460
[157]
Edri E, Kirmayer S, Henning A, et al. Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor). Nano Lett, 2014, 14, 1000 doi: 10.1021/nl404454h
[158]
Yang W S, Park B W, Jung E H, et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science, 2017, 356, 1376 doi: 10.1126/science.aan2301
[159]
Shi J J, Xu X, Li D M, et al. Interfaces in perovskite solar cells. Small, 2015, 11, 2472 doi: 10.1002/smll.201403534
[160]
Wang R, Xue J, Wang K L, et al. Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science, 2019, 366, 1509 doi: 10.1126/science.aay9698
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2519 Times PDF downloads: 445 Times Cited by: 0 Times

    History

    Received: 12 October 2021 Revised: 24 November 2021 Online: Accepted Manuscript: 07 January 2022Uncorrected proof: 10 January 2022Published: 01 May 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Wanlong Wang, Dongyang Zhang, Rong Liu, Deepak Thrithamarassery Gangadharan, Furui Tan, Makhsud I. Saidaminov. Characterization of interfaces: Lessons from the past for the future of perovskite solar cells[J]. Journal of Semiconductors, 2022, 43(5): 051202. doi: 10.1088/1674-4926/43/5/051202 ****Wanlong Wang, Dongyang Zhang, Rong Liu, Deepak Thrithamarassery Gangadharan, Furui Tan, Makhsud I. Saidaminov. 2022: Characterization of interfaces: Lessons from the past for the future of perovskite solar cells. Journal of Semiconductors, 43(5): 051202. doi: 10.1088/1674-4926/43/5/051202
      Citation:
      Wanlong Wang, Dongyang Zhang, Rong Liu, Deepak Thrithamarassery Gangadharan, Furui Tan, Makhsud I. Saidaminov. Characterization of interfaces: Lessons from the past for the future of perovskite solar cells[J]. Journal of Semiconductors, 2022, 43(5): 051202. doi: 10.1088/1674-4926/43/5/051202 ****
      Wanlong Wang, Dongyang Zhang, Rong Liu, Deepak Thrithamarassery Gangadharan, Furui Tan, Makhsud I. Saidaminov. 2022: Characterization of interfaces: Lessons from the past for the future of perovskite solar cells. Journal of Semiconductors, 43(5): 051202. doi: 10.1088/1674-4926/43/5/051202

      Characterization of interfaces: Lessons from the past for the future of perovskite solar cells

      doi: 10.1088/1674-4926/43/5/051202
      More Information
      • Wanlong Wang:received his bachelor’s degree from Zhengzhou University in 2019. He is currently an M.S. candidate under the supervision of Associate Professor Furui Tan at Henan University. His current research focuses on the modification of transparent electrodes for perovskite solar cells
      • Rong Liu:received her Ph.D. from School of Materials Science and Engineering, Hubei University in 2016. From 2017–2019, she worked as a postdoctoral fellow in Shenzhen Graduate School of Peking University. She joined the Henan Key Laboratory of Photovoltaic Materials, Henan University in 2019. Her current research interests include quantum dots solar cells, perovskite solar cell and photoelectric detector
      • Corresponding author: liurong@pkusz.edu.cnfrtan@henu.edu.cnmsaidaminov@uvic.ca
      • Received Date: 2021-10-12
      • Revised Date: 2021-11-24
      • Available Online: 2022-04-07

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return