ARTICLES

Magnetic tuning in a novel half-metallic Ir2TeI2 monolayer

Didi Zhao, Chenggong Zhang, Changwen Zhang, Weixiao Ji, Shengshi Li and Peiji Wang

+ Author Affiliations

 Corresponding author: Peiji Wang, ss_wangpj@ujn.edu.cn

PDF

Turn off MathJax

Abstract: A two-dimensional (2D) high-temperature ferromagnetic half-metal whose magnetic and electronic properties can be flexibly tuned is required for the application of new spintronics devices. In this paper, we predict a stable Ir2TeI2 monolayer with half-metallicity by systematical first-principles calculations. Its ground state is found to exhibit inherent ferromagnetism and strong out-of-plane magnetic anisotropy of up to 1.024 meV per unit cell. The Curie temperature is estimated to be 293 K based on Monte Carlo simulation. Interestingly, a switch of magnetic axis between in-plane and out-of-plane is achievable under hole and electron doping, which allows for the effective control of spin injection/detection in such 2D systems. Furthermore, the employment of biaxial strain can realize the transition between ferromagnetic and antiferromagnetic states. These findings not only broaden the scope of 2D half-metal materials but they also provide an ideal platform for future applications of multifunctional spintronic devices.

Key words: two-dimensional materialsspintronicshalf-metalmagnetic anisotropy energy



[1]
Huang B, Clark G, Navarro-Moratalla E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546, 270 doi: 10.1038/nature22391
[2]
Gong C, Li L, Li Z L, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546, 265 doi: 10.1038/nature22060
[3]
Deng Y J, Yu Y J, Song Y C, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature, 2018, 563, 94 doi: 10.1038/s41586-018-0626-9
[4]
Bonilla M, Kolekar S, Ma Y J, et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat Nanotechnol, 2018, 13, 289 doi: 10.1038/s41565-018-0063-9
[5]
O’Hara D, Zhu T C, Trout A H, et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett, 2018, 18, 3125 doi: 10.1021/acs.nanolett.8b00683
[6]
Zheng S, Huang C, Yu T, et al. High-temperature ferromagnetism in an Fe3P monolayer with a large magnetic anisotropy. J Phys Chem Lett, 2019, 10, 2733 doi: 10.1021/acs.jpclett.9b00970
[7]
Lee J U, Lee S, Ryoo J H, et al. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett, 2016, 16, 7433 doi: 10.1021/acs.nanolett.6b03052
[8]
Mermin N D, Wagner H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys Rev Lett, 1966, 17, 1133 doi: 10.1103/PhysRevLett.17.1133
[9]
Stöhr J, Siegmann H C. Polarized electrons and magnetism. Magnetism: From Fundamentals to Nanoscale Dynamics. Nanoscale Dynamics, 2006, 313
[10]
Lado J L, Fernández-Rossier J. On the origin of magnetic anisotropy in two dimensional CrI3. 2D Mater, 2017, 4, 035002 doi: 10.1088/2053-1583/aa75ed
[11]
Xu C S, Feng J S, Xiang H J, et al. Interplay between Kitaev interaction and single ion anisotropy in ferromagnetic CrI3 and CrGeTe3 monolayers. npj Comput Mater, 2018, 4, 57 doi: 10.1038/s41524-018-0115-6
[12]
Li X X, Dong B J, Sun X D, et al. Perspectives on exfoliated two-dimensional spintronics. J Semicond, 2019, 40, 081508 doi: 10.1088/1674-4926/40/8/081508
[13]
Wang X, Tang J, Xia X X, et al. Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2. Sci Adv, 2019, 5, eaaw8904 doi: 10.1126/sciadv.aaw8904
[14]
Ikeda S, Miura K, Yamamoto H, et al. A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nat Mater, 2010, 9, 721 doi: 10.1038/nmat2804
[15]
Dieny B, Chshiev M. Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications. Rev Mod Phys, 2017, 89, 025008 doi: 10.1103/RevModPhys.89.025008
[16]
Katmis F, Lauter V, Nogueira F S, et al. A high-temperature ferromagnetic topological insulating phase by proximity coupling. Nature, 2016, 533, 513 doi: 10.1038/nature17635
[17]
Liu L, Ren X, Xie J H, et al. Magnetic switches via electric field in BN nanoribbons. Appl Surf Sci, 2019, 480, 300 doi: 10.1016/j.apsusc.2019.02.203
[18]
Wu Z, Yu J, Yuan S. Strain-tunable magnetic and electronic properties of monolayer CrI3. Phys Chem Chem Phys, 2019, 21, 7750 doi: 10.1039/C8CP07067A
[19]
Ohno H, Chiba D, Matsukura F, et al. Electric-field control of ferromagnetism. Nature, 2000, 408, 944 doi: 10.1038/35050040
[20]
Weisheit M, Fähler S, Marty A, et al. Electric field-induced modification of magnetism in thin-film ferromagnets. Science, 2007, 315, 349 doi: 10.1126/science.1136629
[21]
Wang Z R, Hao Z, Wang X J, et al. Cytokine storm biomarkers: A flexible and regenerative aptameric graphene–nafion biosensor for cytokine storm biomarker monitoring in undiluted biofluids toward wearable applications. Adv Funct Mater, 2021, 31, 2170026 doi: 10.1002/adfm.202170026
[22]
Wang Z R, Hao Z, Yu S F, et al. An ultraflexible and stretchable aptameric graphene nanosensor for biomarker detection and monitoring. Adv Funct Mater, 2019, 29, 1905202 doi: 10.1002/adfm.201905202
[23]
Wang Y P, Ji W X, Zhang C W, et al. Discovery of intrinsic quantum anomalous Hall effect in organic Mn-DCA lattice. Appl Phys Lett, 2017, 110, 233107 doi: 10.1063/1.4985144
[24]
Zhang L, Zhang S F, Ji W X, et al. Discovery of a novel spin-polarized nodal ring in a two-dimensional HK lattice. Nanoscale, 2018, 10, 20748 doi: 10.1039/C8NR05383A
[25]
Zhang M H, Chen X L, Ji W X, et al. Discovery of multiferroics with tunable magnetism in two-dimensional lead oxide. Appl Phys Lett, 2020, 116, 172105 doi: 10.1063/1.5144842
[26]
Huang C X, Feng J S, Wu F, et al. Toward intrinsic room-temperature ferromagnetism in two-dimensional semiconductors. J Am Chem Soc, 2018, 140, 11519 doi: 10.1021/jacs.8b07879
[27]
You J Y, Zhang Z, Dong X J, et al. Two-dimensional magnetic semiconductors with room Curie temperatures. Phys Rev Research, 2020, 2, 013002 doi: 10.1103/PhysRevResearch.2.013002
[28]
Yu J X, Zang J. Giant perpendicular magnetic anisotropy in Fe/III-V nitride thin films. Sci Adv, 2018, 4, eaar7814 doi: 10.1126/sciadv.aar7814
[29]
Jiang S W, Shan J, Mak K F. Electric-field switching of two-dimensional van der Waals magnets. Nat Mater, 2018, 17, 406 doi: 10.1038/s41563-018-0040-6
[30]
You J Y, Zhang Z, Gu B, et al. Two-dimensional room temperature ferromagnetic semiconductors with quantum anomalous Hall effect. arXiv: 1904.11357, 2019
[31]
Novoselov K S. Nobel lecture: Graphene: Materials in the flatland. Rev Mod Phys, 2011, 83, 837 doi: 10.1103/RevModPhys.83.837
[32]
Yang S W, Peng R C, Jiang T, et al. Non-volatile 180° magnetization reversal by an electric field in multiferroic heterostructures. Adv Mater, 2014, 26, 7091 doi: 10.1002/adma.201402774
[33]
Kum H S, Lee H, Kim S, et al. Heterogeneous integration of single-crystalline complex-oxide membranes. Nature, 2020, 578, 75 doi: 10.1038/s41586-020-1939-z
[34]
Caretta L, Rosenberg E, Büttner F, et al. Interfacial Dzyaloshinskii-Moriya interaction arising from rare-earth orbital magnetism in insulating magnetic oxides. Nat Commun, 2020, 11, 1090 doi: 10.1038/s41467-020-14924-7
[35]
Cui Q R, Liang J H, Shao Z J, et al. Strain-tunable ferromagnetism and chiral spin textures in two-dimensional Janus chromium dichalcogenides. Phys Rev B, 2020, 102, 094425 doi: 10.1103/PhysRevB.102.094425
[36]
Dong X J, You J Y, Gu B, et al. Strain-induced room-temperature ferromagnetic semiconductors with large anomalous hall conductivity in two-dimensional Cr2Ge2Se6. Phys Rev Appl, 2019, 12, 014020 doi: 10.1103/PhysRevApplied.12.014020
[37]
Saito Y, Nojima T, Iwasa Y. Highly crystalline 2D superconductors. Nat Rev Mater, 2017, 2, 16094 doi: 10.1038/natrevmats.2016.94
[38]
Jiang S W, Li L Z, Wang Z F, et al. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat Nanotechnol, 2018, 13, 549 doi: 10.1038/s41565-018-0135-x
[39]
Abdollahi M, Bagheri Tagani M. Tuning intrinsic ferromagnetic and anisotropic properties of the Janus VSeS monolayer. J Mater Chem C, 2020, 8, 13286 doi: 10.1039/D0TC03147J
[40]
Zhang S J, Zhang C W, Zhang S F, et al. Intrinsic Dirac half-metal and quantum anomalous Hall phase in a hexagonal metal-oxide lattice. Phys Rev B, 2017, 96, 205433 doi: 10.1103/PhysRevB.96.205433
[41]
Yang H X, Vu A D, Hallal A, et al. Anatomy and giant enhancement of the perpendicular magnetic anisotropy of cobalt– graphene heterostructures. Nano Lett, 2016, 16, 145 doi: 10.1021/acs.nanolett.5b03392
[42]
Ma A N, Wang P J, Zhang C W. Intrinsic ferromagnetism with high temperature, strong anisotropy and controllable magnetization in the CrX (X = P, As) monolayer. Nanoscale, 2020, 12, 5464 doi: 10.1039/C9NR10322H
[43]
Bafekry A, Neek-Amal M, Peeters F M. Two-dimensional graphitic carbon nitrides: Strain-tunable ferromagnetic ordering. Phys Rev B, 2020, 101, 165407 doi: 10.1103/PhysRevB.101.165407
[44]
Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci, 1996, 6, 15 doi: 10.1016/0927-0256(96)00008-0
[45]
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54, 11169 doi: 10.1103/PhysRevB.54.11169
[46]
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77, 3865 doi: 10.1103/PhysRevLett.77.3865
[47]
Wang L, Maxisch T, Ceder G. Oxidation energies of transition metal oxides within the GGA+U framework. Phys Rev B, 2006, 73, 195107 doi: 10.1103/PhysRevB.73.195107
[48]
Krukau A V, Vydrov O A, Izmaylov A F, et al. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J Chem Phys, 2006, 125, 224106 doi: 10.1063/1.2404663
[49]
Blöchl P E. Projector augmented-wave method. Phys Rev B, 1994, 50, 17953 doi: 10.1103/PhysRevB.50.17953
[50]
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 1999, 59, 1758 doi: 10.1103/PhysRevB.59.1758
[51]
Togo A, Oba F, Tanaka I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-typeSiO2 at high pressures. Phys Rev B, 2008, 78, 134106 doi: 10.1103/PhysRevB.78.134106
[52]
Liu J, Sun Q, Kawazoe Y, et al. Exfoliating biocompatible ferromagnetic Cr-trihalide monolayers. Phys Chem Chem Phys, 2016, 18, 8777 doi: 10.1039/C5CP04835D
[53]
Ryazanov M, Simon A, Mattausch H. La2TeI2: a new layered telluride iodide with unusual electrical properties. Inorg Chem, 2006, 45, 10728 doi: 10.1021/ic061675r
[54]
Jayasena B, Subbiah S. A novel mechanical cleavage method for synthesizing few-layer graphenes. Nanoscale Res Lett, 2011, 6, 95 doi: 10.1186/1556-276X-6-95
[55]
Nicolosi V, Chhowalla M, Kanatzidis M G, et al. Liquid exfoliation of layered materials. Science, 2013, 340, 1226419 doi: 10.1126/science.1226419
[56]
He J J, Lyu P B, Nachtigall P. New two-dimensional Mn-based MXenes with room-temperature ferromagnetism and half-metallicity. J Mater Chem C, 2016, 4, 11143 doi: 10.1039/C6TC03917K
[57]
Gao G, Ding G, Li J, et al. Monolayer MXenes: Promising half-metals and spin gapless semiconductors. Nanoscale, 2016, 8, 8986 doi: 10.1039/C6NR01333C
[58]
Hu L, Wu X J, Yang J L. Mn2C monolayer: A 2D antiferromagnetic metal with high Néel temperature and large spin–orbit coupling. Nanoscale, 2016, 8, 12939 doi: 10.1039/C6NR02417C
[59]
Mouhat F, Coudert F X. Necessary and sufficient elastic stability conditions in various crystal systems. arXiv: 1410.0065, 2014
[60]
Cadelano E, Palla P L, Giordano S, et al. Elastic properties of hydrogenated graphene. Phys Rev B, 2010, 82, 235414 doi: 10.1103/PhysRevB.82.235414
[61]
Ding Y, Wang Y L. Density functional theory study of the silicene-like SiX and XSi3 (X = B, C, N, Al, P) honeycomb lattices: The various buckled structures and versatile electronic properties. J Phys Chem C, 2013, 117, 18266 doi: 10.1021/jp407666m
[62]
Andrew R C, Mapasha R E, Ukpong A M, et al. Mechanical properties of graphene and boronitrene. Phys Rev B, 2012, 85, 125428 doi: 10.1103/PhysRevB.85.125428
[63]
Gao Z B, Dong X, Li N B, et al. Novel two-dimensional silicon dioxide with in-plane negative poisson's ratio. Nano Lett, 2017, 17, 772 doi: 10.1021/acs.nanolett.6b03921
[64]
Weiss A. John B. Goodenough: Magnetism and the chemical bond. Berichte Der Bunsengesellschaft Für Physikalische Chemie, 1964, 68, 996
[65]
Hajalilou A, Hashim M, Mohamed Kamari H. Structure and magnetic properties of Ni0.64Zn0.36Fe2O4 nanoparticles synthesized by high-energy milling and subsequent heat treatment. J Mater Sci Mater Electron, 2015, 26, 1709 doi: 10.1007/s10854-014-2597-4
[66]
Gong S J, Duan C G, Zhu Z Q, et al. Manipulation of magnetic anisotropy of Fe/graphene by charge injection. Appl Phys Lett, 2012, 100, 122410 doi: 10.1063/1.3697627
[67]
Lv H Y, Lu W J, Shao D F, et al. Strain-controlled switch between ferromagnetism and antiferromagnetism in 1T–CrX2 (X = Se, Te) monolayers. Phys Rev B, 2015, 92, 214419 doi: 10.1103/PhysRevB.92.214419
Fig. 1.  (Color online) (a) Lattice structure of Ir2TeI2 monolayer. (b) Diagram of the first Brillouin zone of 2D hexagonal structure. (c) The phonon dispersion of Ir2TeI2. (d) The energy change when Ir2TeI2 monolayer is stripped. d is the distance between the two layers. (e, f) Graphs of Poisson's ratio and Young's modulus, respectively.

Fig. 2.  (Color online) (a) Electron band structure of Ir2TeI2 monolayer, the red represents spin up, blue represents spin down. (b) The PDOS of Ir atom in different spin channels.

Fig. 3.  (Color online) (a) FM and three types of AFM magnetic order diagrams of magnetic atoms, purple and blue represent different spin orientations, respectively. ΔE represents the energy of different magnetic sequences with respect to the FM state. (b) The change of specific heat and magnetism relative to temperature, red line denotes specific heat Cv and blue denotes atomic mean magnetic moment.

Fig. 4.  (Color online) Angle dependence of MAE of Ir2TeI2 in (a) xz plane and (b) xy plane, where θ and φ correspond to the z and x axes, respectively.

Fig. 5.  (Color online) (a) Carrier injection regulates the magnetization direction in ferromagnetic state. (b) A schematic diagram of a 2D magnetoelectric device controlled by electrostatic doping to achieve the giant magnetoresistance effect, the 2D FM monomolecular layer is bi-gated, while the two by like SiO2 dielectric layers act to avoid direct tunneling.

Fig. 6.  (Color online) (a) The variation of bond lengths of the closest neighbors Ir1-Ir2 and Ir-Te between layers and bond angle β as a function of strain. (b) The variation of bond lengths of the next closest neighbors Ir1-Ir1 and Ir-I within layers and bond Angle α as a function of strain. (c) Structural energy changes and competition between FM and AFM under strain (–10% to 10%). (d) The value change of band gap and MAE with compressive strain. (e) The antiferromagnetic coupling of direct exchange between magnetic atoms and (f) the ferromagnetic coupling of hyperexchange mediated by Te/I atoms.

Table 1.   MAE (meV) of unit cell with respect to (001) direction, anisotropy constant K (meV) and Tc (K)

Magnetic axis001001110111TcK1K2
ΔE (meV/uc)1.02401.0160.5822930.330.176
DownLoad: CSV
[1]
Huang B, Clark G, Navarro-Moratalla E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546, 270 doi: 10.1038/nature22391
[2]
Gong C, Li L, Li Z L, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546, 265 doi: 10.1038/nature22060
[3]
Deng Y J, Yu Y J, Song Y C, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature, 2018, 563, 94 doi: 10.1038/s41586-018-0626-9
[4]
Bonilla M, Kolekar S, Ma Y J, et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat Nanotechnol, 2018, 13, 289 doi: 10.1038/s41565-018-0063-9
[5]
O’Hara D, Zhu T C, Trout A H, et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett, 2018, 18, 3125 doi: 10.1021/acs.nanolett.8b00683
[6]
Zheng S, Huang C, Yu T, et al. High-temperature ferromagnetism in an Fe3P monolayer with a large magnetic anisotropy. J Phys Chem Lett, 2019, 10, 2733 doi: 10.1021/acs.jpclett.9b00970
[7]
Lee J U, Lee S, Ryoo J H, et al. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett, 2016, 16, 7433 doi: 10.1021/acs.nanolett.6b03052
[8]
Mermin N D, Wagner H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys Rev Lett, 1966, 17, 1133 doi: 10.1103/PhysRevLett.17.1133
[9]
Stöhr J, Siegmann H C. Polarized electrons and magnetism. Magnetism: From Fundamentals to Nanoscale Dynamics. Nanoscale Dynamics, 2006, 313
[10]
Lado J L, Fernández-Rossier J. On the origin of magnetic anisotropy in two dimensional CrI3. 2D Mater, 2017, 4, 035002 doi: 10.1088/2053-1583/aa75ed
[11]
Xu C S, Feng J S, Xiang H J, et al. Interplay between Kitaev interaction and single ion anisotropy in ferromagnetic CrI3 and CrGeTe3 monolayers. npj Comput Mater, 2018, 4, 57 doi: 10.1038/s41524-018-0115-6
[12]
Li X X, Dong B J, Sun X D, et al. Perspectives on exfoliated two-dimensional spintronics. J Semicond, 2019, 40, 081508 doi: 10.1088/1674-4926/40/8/081508
[13]
Wang X, Tang J, Xia X X, et al. Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2. Sci Adv, 2019, 5, eaaw8904 doi: 10.1126/sciadv.aaw8904
[14]
Ikeda S, Miura K, Yamamoto H, et al. A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nat Mater, 2010, 9, 721 doi: 10.1038/nmat2804
[15]
Dieny B, Chshiev M. Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications. Rev Mod Phys, 2017, 89, 025008 doi: 10.1103/RevModPhys.89.025008
[16]
Katmis F, Lauter V, Nogueira F S, et al. A high-temperature ferromagnetic topological insulating phase by proximity coupling. Nature, 2016, 533, 513 doi: 10.1038/nature17635
[17]
Liu L, Ren X, Xie J H, et al. Magnetic switches via electric field in BN nanoribbons. Appl Surf Sci, 2019, 480, 300 doi: 10.1016/j.apsusc.2019.02.203
[18]
Wu Z, Yu J, Yuan S. Strain-tunable magnetic and electronic properties of monolayer CrI3. Phys Chem Chem Phys, 2019, 21, 7750 doi: 10.1039/C8CP07067A
[19]
Ohno H, Chiba D, Matsukura F, et al. Electric-field control of ferromagnetism. Nature, 2000, 408, 944 doi: 10.1038/35050040
[20]
Weisheit M, Fähler S, Marty A, et al. Electric field-induced modification of magnetism in thin-film ferromagnets. Science, 2007, 315, 349 doi: 10.1126/science.1136629
[21]
Wang Z R, Hao Z, Wang X J, et al. Cytokine storm biomarkers: A flexible and regenerative aptameric graphene–nafion biosensor for cytokine storm biomarker monitoring in undiluted biofluids toward wearable applications. Adv Funct Mater, 2021, 31, 2170026 doi: 10.1002/adfm.202170026
[22]
Wang Z R, Hao Z, Yu S F, et al. An ultraflexible and stretchable aptameric graphene nanosensor for biomarker detection and monitoring. Adv Funct Mater, 2019, 29, 1905202 doi: 10.1002/adfm.201905202
[23]
Wang Y P, Ji W X, Zhang C W, et al. Discovery of intrinsic quantum anomalous Hall effect in organic Mn-DCA lattice. Appl Phys Lett, 2017, 110, 233107 doi: 10.1063/1.4985144
[24]
Zhang L, Zhang S F, Ji W X, et al. Discovery of a novel spin-polarized nodal ring in a two-dimensional HK lattice. Nanoscale, 2018, 10, 20748 doi: 10.1039/C8NR05383A
[25]
Zhang M H, Chen X L, Ji W X, et al. Discovery of multiferroics with tunable magnetism in two-dimensional lead oxide. Appl Phys Lett, 2020, 116, 172105 doi: 10.1063/1.5144842
[26]
Huang C X, Feng J S, Wu F, et al. Toward intrinsic room-temperature ferromagnetism in two-dimensional semiconductors. J Am Chem Soc, 2018, 140, 11519 doi: 10.1021/jacs.8b07879
[27]
You J Y, Zhang Z, Dong X J, et al. Two-dimensional magnetic semiconductors with room Curie temperatures. Phys Rev Research, 2020, 2, 013002 doi: 10.1103/PhysRevResearch.2.013002
[28]
Yu J X, Zang J. Giant perpendicular magnetic anisotropy in Fe/III-V nitride thin films. Sci Adv, 2018, 4, eaar7814 doi: 10.1126/sciadv.aar7814
[29]
Jiang S W, Shan J, Mak K F. Electric-field switching of two-dimensional van der Waals magnets. Nat Mater, 2018, 17, 406 doi: 10.1038/s41563-018-0040-6
[30]
You J Y, Zhang Z, Gu B, et al. Two-dimensional room temperature ferromagnetic semiconductors with quantum anomalous Hall effect. arXiv: 1904.11357, 2019
[31]
Novoselov K S. Nobel lecture: Graphene: Materials in the flatland. Rev Mod Phys, 2011, 83, 837 doi: 10.1103/RevModPhys.83.837
[32]
Yang S W, Peng R C, Jiang T, et al. Non-volatile 180° magnetization reversal by an electric field in multiferroic heterostructures. Adv Mater, 2014, 26, 7091 doi: 10.1002/adma.201402774
[33]
Kum H S, Lee H, Kim S, et al. Heterogeneous integration of single-crystalline complex-oxide membranes. Nature, 2020, 578, 75 doi: 10.1038/s41586-020-1939-z
[34]
Caretta L, Rosenberg E, Büttner F, et al. Interfacial Dzyaloshinskii-Moriya interaction arising from rare-earth orbital magnetism in insulating magnetic oxides. Nat Commun, 2020, 11, 1090 doi: 10.1038/s41467-020-14924-7
[35]
Cui Q R, Liang J H, Shao Z J, et al. Strain-tunable ferromagnetism and chiral spin textures in two-dimensional Janus chromium dichalcogenides. Phys Rev B, 2020, 102, 094425 doi: 10.1103/PhysRevB.102.094425
[36]
Dong X J, You J Y, Gu B, et al. Strain-induced room-temperature ferromagnetic semiconductors with large anomalous hall conductivity in two-dimensional Cr2Ge2Se6. Phys Rev Appl, 2019, 12, 014020 doi: 10.1103/PhysRevApplied.12.014020
[37]
Saito Y, Nojima T, Iwasa Y. Highly crystalline 2D superconductors. Nat Rev Mater, 2017, 2, 16094 doi: 10.1038/natrevmats.2016.94
[38]
Jiang S W, Li L Z, Wang Z F, et al. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat Nanotechnol, 2018, 13, 549 doi: 10.1038/s41565-018-0135-x
[39]
Abdollahi M, Bagheri Tagani M. Tuning intrinsic ferromagnetic and anisotropic properties of the Janus VSeS monolayer. J Mater Chem C, 2020, 8, 13286 doi: 10.1039/D0TC03147J
[40]
Zhang S J, Zhang C W, Zhang S F, et al. Intrinsic Dirac half-metal and quantum anomalous Hall phase in a hexagonal metal-oxide lattice. Phys Rev B, 2017, 96, 205433 doi: 10.1103/PhysRevB.96.205433
[41]
Yang H X, Vu A D, Hallal A, et al. Anatomy and giant enhancement of the perpendicular magnetic anisotropy of cobalt– graphene heterostructures. Nano Lett, 2016, 16, 145 doi: 10.1021/acs.nanolett.5b03392
[42]
Ma A N, Wang P J, Zhang C W. Intrinsic ferromagnetism with high temperature, strong anisotropy and controllable magnetization in the CrX (X = P, As) monolayer. Nanoscale, 2020, 12, 5464 doi: 10.1039/C9NR10322H
[43]
Bafekry A, Neek-Amal M, Peeters F M. Two-dimensional graphitic carbon nitrides: Strain-tunable ferromagnetic ordering. Phys Rev B, 2020, 101, 165407 doi: 10.1103/PhysRevB.101.165407
[44]
Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci, 1996, 6, 15 doi: 10.1016/0927-0256(96)00008-0
[45]
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54, 11169 doi: 10.1103/PhysRevB.54.11169
[46]
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77, 3865 doi: 10.1103/PhysRevLett.77.3865
[47]
Wang L, Maxisch T, Ceder G. Oxidation energies of transition metal oxides within the GGA+U framework. Phys Rev B, 2006, 73, 195107 doi: 10.1103/PhysRevB.73.195107
[48]
Krukau A V, Vydrov O A, Izmaylov A F, et al. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J Chem Phys, 2006, 125, 224106 doi: 10.1063/1.2404663
[49]
Blöchl P E. Projector augmented-wave method. Phys Rev B, 1994, 50, 17953 doi: 10.1103/PhysRevB.50.17953
[50]
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 1999, 59, 1758 doi: 10.1103/PhysRevB.59.1758
[51]
Togo A, Oba F, Tanaka I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-typeSiO2 at high pressures. Phys Rev B, 2008, 78, 134106 doi: 10.1103/PhysRevB.78.134106
[52]
Liu J, Sun Q, Kawazoe Y, et al. Exfoliating biocompatible ferromagnetic Cr-trihalide monolayers. Phys Chem Chem Phys, 2016, 18, 8777 doi: 10.1039/C5CP04835D
[53]
Ryazanov M, Simon A, Mattausch H. La2TeI2: a new layered telluride iodide with unusual electrical properties. Inorg Chem, 2006, 45, 10728 doi: 10.1021/ic061675r
[54]
Jayasena B, Subbiah S. A novel mechanical cleavage method for synthesizing few-layer graphenes. Nanoscale Res Lett, 2011, 6, 95 doi: 10.1186/1556-276X-6-95
[55]
Nicolosi V, Chhowalla M, Kanatzidis M G, et al. Liquid exfoliation of layered materials. Science, 2013, 340, 1226419 doi: 10.1126/science.1226419
[56]
He J J, Lyu P B, Nachtigall P. New two-dimensional Mn-based MXenes with room-temperature ferromagnetism and half-metallicity. J Mater Chem C, 2016, 4, 11143 doi: 10.1039/C6TC03917K
[57]
Gao G, Ding G, Li J, et al. Monolayer MXenes: Promising half-metals and spin gapless semiconductors. Nanoscale, 2016, 8, 8986 doi: 10.1039/C6NR01333C
[58]
Hu L, Wu X J, Yang J L. Mn2C monolayer: A 2D antiferromagnetic metal with high Néel temperature and large spin–orbit coupling. Nanoscale, 2016, 8, 12939 doi: 10.1039/C6NR02417C
[59]
Mouhat F, Coudert F X. Necessary and sufficient elastic stability conditions in various crystal systems. arXiv: 1410.0065, 2014
[60]
Cadelano E, Palla P L, Giordano S, et al. Elastic properties of hydrogenated graphene. Phys Rev B, 2010, 82, 235414 doi: 10.1103/PhysRevB.82.235414
[61]
Ding Y, Wang Y L. Density functional theory study of the silicene-like SiX and XSi3 (X = B, C, N, Al, P) honeycomb lattices: The various buckled structures and versatile electronic properties. J Phys Chem C, 2013, 117, 18266 doi: 10.1021/jp407666m
[62]
Andrew R C, Mapasha R E, Ukpong A M, et al. Mechanical properties of graphene and boronitrene. Phys Rev B, 2012, 85, 125428 doi: 10.1103/PhysRevB.85.125428
[63]
Gao Z B, Dong X, Li N B, et al. Novel two-dimensional silicon dioxide with in-plane negative poisson's ratio. Nano Lett, 2017, 17, 772 doi: 10.1021/acs.nanolett.6b03921
[64]
Weiss A. John B. Goodenough: Magnetism and the chemical bond. Berichte Der Bunsengesellschaft Für Physikalische Chemie, 1964, 68, 996
[65]
Hajalilou A, Hashim M, Mohamed Kamari H. Structure and magnetic properties of Ni0.64Zn0.36Fe2O4 nanoparticles synthesized by high-energy milling and subsequent heat treatment. J Mater Sci Mater Electron, 2015, 26, 1709 doi: 10.1007/s10854-014-2597-4
[66]
Gong S J, Duan C G, Zhu Z Q, et al. Manipulation of magnetic anisotropy of Fe/graphene by charge injection. Appl Phys Lett, 2012, 100, 122410 doi: 10.1063/1.3697627
[67]
Lv H Y, Lu W J, Shao D F, et al. Strain-controlled switch between ferromagnetism and antiferromagnetism in 1T–CrX2 (X = Se, Te) monolayers. Phys Rev B, 2015, 92, 214419 doi: 10.1103/PhysRevB.92.214419

2022052001suppl.pdf

  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1179 Times PDF downloads: 66 Times Cited by: 0 Times

    History

    Received: 05 November 2021 Revised: 18 November 2021 Online: Accepted Manuscript: 10 January 2022Uncorrected proof: 11 January 2022Published: 01 May 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Didi Zhao, Chenggong Zhang, Changwen Zhang, Weixiao Ji, Shengshi Li, Peiji Wang. Magnetic tuning in a novel half-metallic Ir2TeI2 monolayer[J]. Journal of Semiconductors, 2022, 43(5): 052001. doi: 10.1088/1674-4926/43/5/052001 ****Didi Zhao, Chenggong Zhang, Changwen Zhang, Weixiao Ji, Shengshi Li, Peiji Wang. 2022: Magnetic tuning in a novel half-metallic Ir2TeI2 monolayer. Journal of Semiconductors, 43(5): 052001. doi: 10.1088/1674-4926/43/5/052001
      Citation:
      Didi Zhao, Chenggong Zhang, Changwen Zhang, Weixiao Ji, Shengshi Li, Peiji Wang. Magnetic tuning in a novel half-metallic Ir2TeI2 monolayer[J]. Journal of Semiconductors, 2022, 43(5): 052001. doi: 10.1088/1674-4926/43/5/052001 ****
      Didi Zhao, Chenggong Zhang, Changwen Zhang, Weixiao Ji, Shengshi Li, Peiji Wang. 2022: Magnetic tuning in a novel half-metallic Ir2TeI2 monolayer. Journal of Semiconductors, 43(5): 052001. doi: 10.1088/1674-4926/43/5/052001

      Magnetic tuning in a novel half-metallic Ir2TeI2 monolayer

      doi: 10.1088/1674-4926/43/5/052001
      More Information
      • Didi Zhao:received her B.Sc. degree in physics from the University of Jinan, China. She is now a physics master's student in the Spintronics team at the School of Physics, University of Jinan. Her main research fields are spintronics and the topological properties of low dimensional materials
      • Peiji Wang:earned his B.Sc. degree in physics from the Jilin University in 1987. He received his Ph.D. degree in optics from the Harbin Institute of Technology in 2009. He has been working at the University of Jinan since 1987. His current research focuses on semiconductor materials, nanomaterial design and the tuning of topological materials
      • Corresponding author: ss_wangpj@ujn.edu.cn
      • Received Date: 2021-11-05
      • Accepted Date: 2022-01-10
      • Revised Date: 2021-11-18
      • Available Online: 2022-03-23

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return