Citation: |
Didi Zhao, Chenggong Zhang, Changwen Zhang, Weixiao Ji, Shengshi Li, Peiji Wang. Magnetic tuning in a novel half-metallic Ir2TeI2 monolayer[J]. Journal of Semiconductors, 2022, 43(5): 052001. doi: 10.1088/1674-4926/43/5/052001
****
Didi Zhao, Chenggong Zhang, Changwen Zhang, Weixiao Ji, Shengshi Li, Peiji Wang. 2022: Magnetic tuning in a novel half-metallic Ir2TeI2 monolayer. Journal of Semiconductors, 43(5): 052001. doi: 10.1088/1674-4926/43/5/052001
|
Magnetic tuning in a novel half-metallic Ir2TeI2 monolayer
doi: 10.1088/1674-4926/43/5/052001
More Information-
Abstract
A two-dimensional (2D) high-temperature ferromagnetic half-metal whose magnetic and electronic properties can be flexibly tuned is required for the application of new spintronics devices. In this paper, we predict a stable Ir2TeI2 monolayer with half-metallicity by systematical first-principles calculations. Its ground state is found to exhibit inherent ferromagnetism and strong out-of-plane magnetic anisotropy of up to 1.024 meV per unit cell. The Curie temperature is estimated to be 293 K based on Monte Carlo simulation. Interestingly, a switch of magnetic axis between in-plane and out-of-plane is achievable under hole and electron doping, which allows for the effective control of spin injection/detection in such 2D systems. Furthermore, the employment of biaxial strain can realize the transition between ferromagnetic and antiferromagnetic states. These findings not only broaden the scope of 2D half-metal materials but they also provide an ideal platform for future applications of multifunctional spintronic devices. -
References
[1] Huang B, Clark G, Navarro-Moratalla E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546, 270 doi: 10.1038/nature22391[2] Gong C, Li L, Li Z L, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546, 265 doi: 10.1038/nature22060[3] Deng Y J, Yu Y J, Song Y C, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature, 2018, 563, 94 doi: 10.1038/s41586-018-0626-9[4] Bonilla M, Kolekar S, Ma Y J, et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat Nanotechnol, 2018, 13, 289 doi: 10.1038/s41565-018-0063-9[5] O’Hara D, Zhu T C, Trout A H, et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett, 2018, 18, 3125 doi: 10.1021/acs.nanolett.8b00683[6] Zheng S, Huang C, Yu T, et al. High-temperature ferromagnetism in an Fe3P monolayer with a large magnetic anisotropy. J Phys Chem Lett, 2019, 10, 2733 doi: 10.1021/acs.jpclett.9b00970[7] Lee J U, Lee S, Ryoo J H, et al. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett, 2016, 16, 7433 doi: 10.1021/acs.nanolett.6b03052[8] Mermin N D, Wagner H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys Rev Lett, 1966, 17, 1133 doi: 10.1103/PhysRevLett.17.1133[9] Stöhr J, Siegmann H C. Polarized electrons and magnetism. Magnetism: From Fundamentals to Nanoscale Dynamics. Nanoscale Dynamics, 2006, 313[10] Lado J L, Fernández-Rossier J. On the origin of magnetic anisotropy in two dimensional CrI3. 2D Mater, 2017, 4, 035002 doi: 10.1088/2053-1583/aa75ed[11] Xu C S, Feng J S, Xiang H J, et al. Interplay between Kitaev interaction and single ion anisotropy in ferromagnetic CrI3 and CrGeTe3 monolayers. npj Comput Mater, 2018, 4, 57 doi: 10.1038/s41524-018-0115-6[12] Li X X, Dong B J, Sun X D, et al. Perspectives on exfoliated two-dimensional spintronics. J Semicond, 2019, 40, 081508 doi: 10.1088/1674-4926/40/8/081508[13] Wang X, Tang J, Xia X X, et al. Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2. Sci Adv, 2019, 5, eaaw8904 doi: 10.1126/sciadv.aaw8904[14] Ikeda S, Miura K, Yamamoto H, et al. A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nat Mater, 2010, 9, 721 doi: 10.1038/nmat2804[15] Dieny B, Chshiev M. Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications. Rev Mod Phys, 2017, 89, 025008 doi: 10.1103/RevModPhys.89.025008[16] Katmis F, Lauter V, Nogueira F S, et al. A high-temperature ferromagnetic topological insulating phase by proximity coupling. Nature, 2016, 533, 513 doi: 10.1038/nature17635[17] Liu L, Ren X, Xie J H, et al. Magnetic switches via electric field in BN nanoribbons. Appl Surf Sci, 2019, 480, 300 doi: 10.1016/j.apsusc.2019.02.203[18] Wu Z, Yu J, Yuan S. Strain-tunable magnetic and electronic properties of monolayer CrI3. Phys Chem Chem Phys, 2019, 21, 7750 doi: 10.1039/C8CP07067A[19] Ohno H, Chiba D, Matsukura F, et al. Electric-field control of ferromagnetism. Nature, 2000, 408, 944 doi: 10.1038/35050040[20] Weisheit M, Fähler S, Marty A, et al. Electric field-induced modification of magnetism in thin-film ferromagnets. Science, 2007, 315, 349 doi: 10.1126/science.1136629[21] Wang Z R, Hao Z, Wang X J, et al. Cytokine storm biomarkers: A flexible and regenerative aptameric graphene–nafion biosensor for cytokine storm biomarker monitoring in undiluted biofluids toward wearable applications. Adv Funct Mater, 2021, 31, 2170026 doi: 10.1002/adfm.202170026[22] Wang Z R, Hao Z, Yu S F, et al. An ultraflexible and stretchable aptameric graphene nanosensor for biomarker detection and monitoring. Adv Funct Mater, 2019, 29, 1905202 doi: 10.1002/adfm.201905202[23] Wang Y P, Ji W X, Zhang C W, et al. Discovery of intrinsic quantum anomalous Hall effect in organic Mn-DCA lattice. Appl Phys Lett, 2017, 110, 233107 doi: 10.1063/1.4985144[24] Zhang L, Zhang S F, Ji W X, et al. Discovery of a novel spin-polarized nodal ring in a two-dimensional HK lattice. Nanoscale, 2018, 10, 20748 doi: 10.1039/C8NR05383A[25] Zhang M H, Chen X L, Ji W X, et al. Discovery of multiferroics with tunable magnetism in two-dimensional lead oxide. Appl Phys Lett, 2020, 116, 172105 doi: 10.1063/1.5144842[26] Huang C X, Feng J S, Wu F, et al. Toward intrinsic room-temperature ferromagnetism in two-dimensional semiconductors. J Am Chem Soc, 2018, 140, 11519 doi: 10.1021/jacs.8b07879[27] You J Y, Zhang Z, Dong X J, et al. Two-dimensional magnetic semiconductors with room Curie temperatures. Phys Rev Research, 2020, 2, 013002 doi: 10.1103/PhysRevResearch.2.013002[28] Yu J X, Zang J. Giant perpendicular magnetic anisotropy in Fe/III-V nitride thin films. Sci Adv, 2018, 4, eaar7814 doi: 10.1126/sciadv.aar7814[29] Jiang S W, Shan J, Mak K F. Electric-field switching of two-dimensional van der Waals magnets. Nat Mater, 2018, 17, 406 doi: 10.1038/s41563-018-0040-6[30] You J Y, Zhang Z, Gu B, et al. Two-dimensional room temperature ferromagnetic semiconductors with quantum anomalous Hall effect. arXiv: 1904.11357, 2019[31] Novoselov K S. Nobel lecture: Graphene: Materials in the flatland. Rev Mod Phys, 2011, 83, 837 doi: 10.1103/RevModPhys.83.837[32] Yang S W, Peng R C, Jiang T, et al. Non-volatile 180° magnetization reversal by an electric field in multiferroic heterostructures. Adv Mater, 2014, 26, 7091 doi: 10.1002/adma.201402774[33] Kum H S, Lee H, Kim S, et al. Heterogeneous integration of single-crystalline complex-oxide membranes. Nature, 2020, 578, 75 doi: 10.1038/s41586-020-1939-z[34] Caretta L, Rosenberg E, Büttner F, et al. Interfacial Dzyaloshinskii-Moriya interaction arising from rare-earth orbital magnetism in insulating magnetic oxides. Nat Commun, 2020, 11, 1090 doi: 10.1038/s41467-020-14924-7[35] Cui Q R, Liang J H, Shao Z J, et al. Strain-tunable ferromagnetism and chiral spin textures in two-dimensional Janus chromium dichalcogenides. Phys Rev B, 2020, 102, 094425 doi: 10.1103/PhysRevB.102.094425[36] Dong X J, You J Y, Gu B, et al. Strain-induced room-temperature ferromagnetic semiconductors with large anomalous hall conductivity in two-dimensional Cr2Ge2Se6. Phys Rev Appl, 2019, 12, 014020 doi: 10.1103/PhysRevApplied.12.014020[37] Saito Y, Nojima T, Iwasa Y. Highly crystalline 2D superconductors. Nat Rev Mater, 2017, 2, 16094 doi: 10.1038/natrevmats.2016.94[38] Jiang S W, Li L Z, Wang Z F, et al. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat Nanotechnol, 2018, 13, 549 doi: 10.1038/s41565-018-0135-x[39] Abdollahi M, Bagheri Tagani M. Tuning intrinsic ferromagnetic and anisotropic properties of the Janus VSeS monolayer. J Mater Chem C, 2020, 8, 13286 doi: 10.1039/D0TC03147J[40] Zhang S J, Zhang C W, Zhang S F, et al. Intrinsic Dirac half-metal and quantum anomalous Hall phase in a hexagonal metal-oxide lattice. Phys Rev B, 2017, 96, 205433 doi: 10.1103/PhysRevB.96.205433[41] Yang H X, Vu A D, Hallal A, et al. Anatomy and giant enhancement of the perpendicular magnetic anisotropy of cobalt– graphene heterostructures. Nano Lett, 2016, 16, 145 doi: 10.1021/acs.nanolett.5b03392[42] Ma A N, Wang P J, Zhang C W. Intrinsic ferromagnetism with high temperature, strong anisotropy and controllable magnetization in the CrX (X = P, As) monolayer. Nanoscale, 2020, 12, 5464 doi: 10.1039/C9NR10322H[43] Bafekry A, Neek-Amal M, Peeters F M. Two-dimensional graphitic carbon nitrides: Strain-tunable ferromagnetic ordering. Phys Rev B, 2020, 101, 165407 doi: 10.1103/PhysRevB.101.165407[44] Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci, 1996, 6, 15 doi: 10.1016/0927-0256(96)00008-0[45] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54, 11169 doi: 10.1103/PhysRevB.54.11169[46] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77, 3865 doi: 10.1103/PhysRevLett.77.3865[47] Wang L, Maxisch T, Ceder G. Oxidation energies of transition metal oxides within the GGA+U framework. Phys Rev B, 2006, 73, 195107 doi: 10.1103/PhysRevB.73.195107[48] Krukau A V, Vydrov O A, Izmaylov A F, et al. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J Chem Phys, 2006, 125, 224106 doi: 10.1063/1.2404663[49] Blöchl P E. Projector augmented-wave method. Phys Rev B, 1994, 50, 17953 doi: 10.1103/PhysRevB.50.17953[50] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 1999, 59, 1758 doi: 10.1103/PhysRevB.59.1758[51] Togo A, Oba F, Tanaka I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-typeSiO2 at high pressures. Phys Rev B, 2008, 78, 134106 doi: 10.1103/PhysRevB.78.134106[52] Liu J, Sun Q, Kawazoe Y, et al. Exfoliating biocompatible ferromagnetic Cr-trihalide monolayers. Phys Chem Chem Phys, 2016, 18, 8777 doi: 10.1039/C5CP04835D[53] Ryazanov M, Simon A, Mattausch H. La2TeI2: a new layered telluride iodide with unusual electrical properties. Inorg Chem, 2006, 45, 10728 doi: 10.1021/ic061675r[54] Jayasena B, Subbiah S. A novel mechanical cleavage method for synthesizing few-layer graphenes. Nanoscale Res Lett, 2011, 6, 95 doi: 10.1186/1556-276X-6-95[55] Nicolosi V, Chhowalla M, Kanatzidis M G, et al. Liquid exfoliation of layered materials. Science, 2013, 340, 1226419 doi: 10.1126/science.1226419[56] He J J, Lyu P B, Nachtigall P. New two-dimensional Mn-based MXenes with room-temperature ferromagnetism and half-metallicity. J Mater Chem C, 2016, 4, 11143 doi: 10.1039/C6TC03917K[57] Gao G, Ding G, Li J, et al. Monolayer MXenes: Promising half-metals and spin gapless semiconductors. Nanoscale, 2016, 8, 8986 doi: 10.1039/C6NR01333C[58] Hu L, Wu X J, Yang J L. Mn2C monolayer: A 2D antiferromagnetic metal with high Néel temperature and large spin–orbit coupling. Nanoscale, 2016, 8, 12939 doi: 10.1039/C6NR02417C[59] Mouhat F, Coudert F X. Necessary and sufficient elastic stability conditions in various crystal systems. arXiv: 1410.0065, 2014[60] Cadelano E, Palla P L, Giordano S, et al. Elastic properties of hydrogenated graphene. Phys Rev B, 2010, 82, 235414 doi: 10.1103/PhysRevB.82.235414[61] Ding Y, Wang Y L. Density functional theory study of the silicene-like SiX and XSi3 (X = B, C, N, Al, P) honeycomb lattices: The various buckled structures and versatile electronic properties. J Phys Chem C, 2013, 117, 18266 doi: 10.1021/jp407666m[62] Andrew R C, Mapasha R E, Ukpong A M, et al. Mechanical properties of graphene and boronitrene. Phys Rev B, 2012, 85, 125428 doi: 10.1103/PhysRevB.85.125428[63] Gao Z B, Dong X, Li N B, et al. Novel two-dimensional silicon dioxide with in-plane negative poisson's ratio. Nano Lett, 2017, 17, 772 doi: 10.1021/acs.nanolett.6b03921[64] Weiss A. John B. Goodenough: Magnetism and the chemical bond. Berichte Der Bunsengesellschaft Für Physikalische Chemie, 1964, 68, 996[65] Hajalilou A, Hashim M, Mohamed Kamari H. Structure and magnetic properties of Ni0.64Zn0.36Fe2O4 nanoparticles synthesized by high-energy milling and subsequent heat treatment. J Mater Sci Mater Electron, 2015, 26, 1709 doi: 10.1007/s10854-014-2597-4[66] Gong S J, Duan C G, Zhu Z Q, et al. Manipulation of magnetic anisotropy of Fe/graphene by charge injection. Appl Phys Lett, 2012, 100, 122410 doi: 10.1063/1.3697627[67] Lv H Y, Lu W J, Shao D F, et al. Strain-controlled switch between ferromagnetism and antiferromagnetism in 1T–CrX2 (X = Se, Te) monolayers. Phys Rev B, 2015, 92, 214419 doi: 10.1103/PhysRevB.92.214419 -
Supplements
2022052001suppl.pdf -
Proportional views