Citation: |
Yamin Zhang, Zuo Xiao, Liming Ding, Hao-Li Zhang. Singlet fission and its application in organic solar cells[J]. Journal of Semiconductors, 2022, 43(8): 080201. doi: 10.1088/1674-4926/43/8/080201
****
Yamin Zhang, Zuo Xiao, Liming Ding, Hao-Li Zhang. 2022: Singlet fission and its application in organic solar cells. Journal of Semiconductors, 43(8): 080201. doi: 10.1088/1674-4926/43/8/080201
|
Singlet fission and its application in organic solar cells
doi: 10.1088/1674-4926/43/8/080201
More Information-
References
[1] Tong Y, Xiao Z, Du X, et al. Progress of the key materials for organic solar cells. Sci China Chem, 2020, 63, 758 doi: 10.1007/s11426-020-9726-0[2] Jin K, Xiao Z, Ding L. D18, an eximious solar polymer!. J Semicond, 2021, 42, 010502 doi: 10.1088/1674-4926/42/1/010502[3] Meng X, Jin K, Xiao Z, et al. Side chain engineering on D18 polymers yields 18.74% power conversion efficiency. J Semicond, 2021, 42, 100501 doi: 10.1088/1674-4926/42/10/100501[4] Cao J, Yi L, Ding L. The origin and evolution of Y6 structure. J Semicond, 2022, 43, 030202 doi: 10.1088/1674-4926/43/3/030202[5] Cao J, Nie G, Zhang L, et al. Star polymer donors. J Semicond, 2022, 43, 070201 doi: 10.1088/1674-4926/43/7/070201[6] Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys, 1961, 32, 510 doi: 10.1063/1.1736034[7] Singh S, Jones W J, Siebrand W, et al. Laser generation of excitons and fluorescence in anthracene crystals. J Chem Phys, 1965, 42, 330 doi: 10.1063/1.1695695[8] Paci I, Johnson J C, Chen X, et al. Singlet fission for dye-sensitized solar cells: Can a suitable sensitizer be found? J Am Chem Soc, 2006, 128, 16546 doi: 10.1021/ja063980h[9] Hanna M C, Nozik A J. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J Appl Phys, 2006, 100, 074510 doi: 10.1063/1.2356795[10] Rao A, Friend R H. Harnessing singlet exciton fission to break the Shockley–Queisser limit. Nat Rev Mater, 2017, 2, 17063 doi: 10.1038/natrevmats.2017.63[11] Smith M B, Michl J. Singlet fission. Chem Rev, 2010, 110, 6891 doi: 10.1021/cr1002613[12] Wang L, Lin L, Yang J, et al. Singlet fission in a pyrrole-fused cross-conjugated skeleton with adaptive aromaticity. J Am Chem Soc, 2020, 142, 10235 doi: 10.1021/jacs.0c00089[13] Smith M B, Michl J. Recent advances in singlet fission. Annu Rev Phys Chem, 2013, 64, 361 doi: 10.1146/annurev-physchem-040412-110130[14] Wilson M W B, Rao A, Clark J, et al. Ultrafast dynamics of exciton fission in polycrystalline pentacene. J Am Chem Soc, 2011, 133, 11830 doi: 10.1021/ja201688h[15] Jundt C, Klein G, Sipp B, et al. Exciton dynamics in pentacene thin films studied by pump-probe spectroscopy. Chem Phys Lett, 1995, 241, 84 doi: 10.1016/0009-2614(95)00603-2[16] Groff R P, Merrifield R E, Avakian P. Singlet and triplet channels for triplet-exciton fusion in anthracene crystals. Chem Phys Lett, 1970, 5, 168 doi: 10.1016/0009-2614(70)80033-1[17] Geacintov N E, Binder M, Swenberg C E, et al. Exciton dynamics in α-particle tracks in organic crystals: Magnetic field study of the scintillation in tetracene crystals. Phys Rev B, 1975, 12, 4113 doi: 10.1103/PhysRevB.12.4113[18] Chan W L, Ligges M, Zhu X Y. The energy barrier in singlet fission can be overcome through coherent coupling and entropic gain. Nat Chem, 2012, 4, 840 doi: 10.1038/nchem.1436[19] Chan W L, Ligges M, Jailaubekov A, et al. Observing the multiexciton state in singlet fission and ensuing ultrafast multielectron transfer. Science, 2011, 334, 1541 doi: 10.1126/science.1213986[20] Liang Z, Zhao W, Wang S, et al. Unexpected photooxidation of H-bonded tetracene. Org Lett, 2008, 10, 2007 doi: 10.1021/ol800620s[21] Li Y, Wu Y, Liu P, et al. Stable Solution-processed high-mobility substituted pentacene semiconductors. Chem Mater, 2007, 19, 418 doi: 10.1021/cm062378n[22] Okamoto T, Senatore M L, Ling M M, et al. Synthesis, characterization, and field-effect transistor performance of pentacene derivatives. Adv Mater, 2007, 19, 3381 doi: 10.1002/adma.200700298[23] Katsuta S, Miyagi D, Yamada H, et al. Synthesis, properties, and ambipolar organic field-effect transistor performances of symmetrically cyanated pentacene and naphthacene as air-stable acene derivatives. Org Lett, 2011, 13, 1454 doi: 10.1021/ol200145r[24] Roberts S T, Mcanally R E, Mastron J N, et al. Efficient singlet fission discovered in a disordered acene film. J Am Chem Soc, 2012, 134, 6388 doi: 10.1021/ja300504t[25] Johnson J C, Nozik A J, Michl J. High triplet yield from singlet fission in a thin film of 1, 3-diphenylisobenzofuran. J Am Chem Soc, 2010, 132, 16302 doi: 10.1021/ja104123r[26] Eaton S W, Shoer L E, Karlen S D, et al. Singlet exciton fission in polycrystalline thin films of a slip-stacked perylenediimide. J Am Chem Soc, 2013, 135, 14701 doi: 10.1021/ja4053174[27] Katoh R, Kotani M, Hirata Y, et al. Triplet exciton formation in a benzophenone single crystal studied by picosecond time-resolved absorption spectroscopy. Chem Phys Lett, 1997, 264, 631 doi: 10.1016/S0009-2614(96)01389-9[28] Najafov H, Lee B, Zhou Q, et al. Observation of long-range exciton diffusion in highly ordered organic semiconductors. Nat Mater, 2010, 9, 938 doi: 10.1038/nmat2872[29] Greyson E C, Vura-Weis J, Michl J, et al. Maximizing singlet fission in organic dimers: theoretical investigation of triplet yield in the regime of localized excitation and fast coherent electron transfer. J Phys Chem B, 2010, 114, 14168 doi: 10.1021/jp907392q[30] Monahan N, Zhu X Y. Charge Transfer–mediated singlet fission. Annu Rev Phys Chem, 2015, 66, 601 doi: 10.1146/annurev-physchem-040214-121235[31] Margulies E A, Miller C E, Wu Y, et al. Enabling singlet fission by controlling intramolecular charge transfer in π-stacked covalent terrylenediimide dimers. Nat Chem, 2016, 8, 1120 doi: 10.1038/nchem.2589[32] Sanders S N, Kumarasamy E, Pun A B, et al. Intramolecular singlet fission in oligoacene heterodimers. Angew Chem Int Ed, 2016, 55, 3373 doi: 10.1002/anie.201510632[33] Wang Z, Liu H, Xie X, et al. Free-triplet generation with improved efficiency in tetracene oligomers through spatially separated triplet pair states. Nat Chem, 2021, 13, 559 doi: 10.1038/s41557-021-00665-7[34] Busby E, Xia J, Wu Q, et al. A design strategy for intramolecular singlet fission mediated by charge-transfer states in donor–acceptor organic materials. Nat Mater, 2015, 14, 426 doi: 10.1038/nmat4175[35] Hu J, Xu K, Shen L, et al. New insights into the design of conjugated polymers for intramolecular singlet fission. Nat Commun, 2018, 9, 2999 doi: 10.1038/s41467-018-05389-w[36] Zimmerman P M, Zhang Z, Musgrave C B. Singlet fission in pentacene through multi-exciton quantum states. Nat Chem, 2010, 2, 648 doi: 10.1038/nchem.694[37] Congreve D N, Lee J, Thompson N J, et al. External quantum efficiency above 100% in a singlet-exciton-fission-based organic photovoltaic cell. Science, 2013, 340, 334 doi: 10.1126/science.1232994[38] Lee J, Jadhav P, Reusswig P D, et al. Singlet exciton fission photovoltaics. Accounts Chem Res, 2013, 46, 1300 doi: 10.1021/ar300288e[39] Ehrler B, Wilson M W B, Rao A, et al. Singlet exciton fission-sensitized infrared quantum dot solar cells. Nano Lett, 2012, 12, 1053 doi: 10.1021/nl204297u[40] Rao A, Wilson M W B, Hodgkiss J M, et al. Exciton fission and charge generation via triplet excitons in pentacene/C60 bilayers. J Am Chem Soc, 2010, 132, 12698 doi: 10.1021/ja1042462[41] Jadhav P J, Mohanty A, Sussman J, et al. Singlet exciton fission in nanostructured organic solar cells. Nano Lett, 2011, 11, 1495 doi: 10.1021/nl104202j[42] Wu T C, Thompson N J, Congreve D N, et al. Singlet fission efficiency in tetracene-based organic solar cells. Appl Phys Lett, 2014, 104, 193901 doi: 10.1063/1.4876600[43] Minami T, Nakano M. Diradical character view of singlet fission. J Phys Chem Lett, 2012, 3, 145 doi: 10.1021/jz2015346[44] Kawata S, Pu Y J, Saito A, et al. Singlet fission of non-polycyclic aromatic molecules in organic photovoltaics. Adv Mater, 2016, 28, 1585 doi: 10.1002/adma.201504281[45] Minaki H, Kawata S, Furudate J, et al. Donor- or acceptor-type 9, 9’-bifluorenylidene derivatives for attaining singlet fission character in organic photovoltaics. Chem Lett, 2017, 46, 1126 doi: 10.1246/cl.170437 -
Proportional views