[1] |
Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131, 6050 doi: 10.1021/ja809598r
|
[2] |
|
[3] |
Green M A, Dunlop E D, Hohl-Ebinger J, et al. Solar cell efficiency tables (Version 58). Prog Photovolt Res Appl, 2021, 29, 657 doi: 10.1002/pip.3444
|
[4] |
|
[5] |
Zuo C, Bolink H J, Han H, et al. Advances in perovskite solar cells. Adv Sci, 2016, 3, 1500324 doi: 10.1002/advs.201500324
|
[6] |
Noh J H, Im S H, Heo J H, et al. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett, 2013, 13, 1764 doi: 10.1021/nl400349b
|
[7] |
Saliba M, Matsui T, Domanski K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 2016, 354, 206 doi: 10.1126/science.aah5557
|
[8] |
Turren-Cruz S H, Hagfeldt A, Saliba M. Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture. Science, 2018, 362, 449 doi: 10.1126/science.aat3583
|
[9] |
Luo D, Su R, Zhang W, et al. Minimizing non-radiative recombination losses in perovskite solar cells. Nat Rev Mater, 2020, 5, 44 doi: 10.1038/s41578-019-0151-y
|
[10] |
Kim H S, Lee C R, Im J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep, 2012, 2, 591 doi: 10.1038/srep00591
|
[11] |
Lee M M, Teuscher J, Miyasaka T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338, 643 doi: 10.1126/science.1228604
|
[12] |
Jeon N J, Noh J H, Kim Y C, et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat Mater, 2014, 13, 897 doi: 10.1038/nmat4014
|
[13] |
Stranks S D, Eperon G E, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342, 341 doi: 10.1126/science.1243982
|
[14] |
Liu M, Johnston M B, Snaith H J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013, 501, 395 doi: 10.1038/nature12509
|
[15] |
Fei C, Guo L, Li B, et al. Controlled growth of textured perovskite films towards high performance solar cells. Nano Energy, 2016, 27, 17 doi: 10.1016/j.nanoen.2016.06.041
|
[16] |
Wang M, Li B, Siffalovic P, et al. Monolayer-like hybrid halide perovskite films prepared by additive engineering without antisolvents for solar cells. J Mater Chem A, 2018, 6, 15386 doi: 10.1039/C8TA04794D
|
[17] |
Guo F, Qiu S, Hu J, et al. A generalized crystallization protocol for scalable deposition of high-quality perovskite thin films for photovoltaic applications. Adv Sci, 2019, 6, 1901067 doi: 10.1002/advs.201901067
|
[18] |
Eperon G E, Stranks S D, Menelaou C, et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci, 2014, 7, 982 doi: 10.1039/c3ee43822h
|
[19] |
Lu H, Krishna A, Zakeeruddin S M, et al. Compositional and interface engineering of organic-inorganic lead halide perovskite solar cells. iScience, 2020, 23, 101359 doi: 10.1016/j.isci.2020.101359
|
[20] |
Lee J W, Kim D H, Kim H S, et al. Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv Energy Mater, 2015, 5, 1501310 doi: 10.1002/aenm.201501310
|
[21] |
Jeon N J, Noh J H, Yang W S, et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature, 2015, 517, 476 doi: 10.1038/nature14133
|
[22] |
Yang W S, Noh J H, Jeon N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348, 1234 doi: 10.1126/science.aaa9272
|
[23] |
Yang C, Wang H, Miao Y, et al. Interfacial molecular doping and energy level alignment regulation for perovskite solar cells with efficiency exceeding 23%. ACS Energy Lett, 2021, 6, 2690 doi: 10.1021/acsenergylett.1c01126
|
[24] |
Luo D, Yang W, Wang Z, et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science, 2018, 360, 1442 doi: 10.1126/science.aap9282
|
[25] |
Yang W S, Park B W, Jung E H, et al. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science, 2017, 356, 1376 doi: 10.1126/science.aan2301
|
[26] |
Saliba M, Matsui T, Seo J Y, et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci, 2016, 9, 1989 doi: 10.1039/C5EE03874J
|
[27] |
Li F, Deng X, Qi F, et al. Regulating surface termination for efficient inverted perovskite solar cells with greater than 23% efficiency. J Am Chem Soc, 2020, 142, 20134 doi: 10.1021/jacs.0c09845
|
[28] |
Yang S, Chen S, Mosconi E, et al. Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science, 2019, 365, 473 doi: 10.1126/science.aax3294
|
[29] |
Wang J, Tang R, Zhang L, et al. Alkali metal cation engineering in organic/inorganic hybrid perovskite solar cells. J Semicond, 2022, 43, 010203 doi: 10.1088/1674-4926/43/1/010203
|
[30] |
Ke L, Zhang L, Ding L. Suppressing photoinduced phase segregation in mixed halide perovskites. J Semicond, 2022, 43, 020201 doi: 10.1088/1674-4926/43/2/020201
|
[31] |
Min H, Kim M, Lee S U, et al. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science, 2019, 366, 749 doi: 10.1126/science.aay7044
|
[32] |
|
[33] |
Kim M, Kim G H, Lee T K, et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule, 2019, 3, 2179 doi: 10.1016/j.joule.2019.06.014
|
[34] |
Jeong J, Kim M, Seo J, et al. Pseudo-halide anion engineering for α-FAPbI 3 perovskite solar cells. Nature, 2021, 592, 381 doi: 10.1038/s41586-021-03406-5
|
[35] |
|
[36] |
Yu B, Zuo C, Shi J, et al. Defect engineering on all-inorganic perovskite solar cells for high efficiency. J Semicond, 2021, 42, 050203 doi: 10.1088/1674-4926/42/5/050203
|
[37] |
Tian T, Yang M, Yang J, et al. Stabilizing black-phase CsPbI 3 under over 70% humidity. J Semicond, 2022, 43, 030501 doi: 10.1088/1674-4926/43/3/030501
|
[38] |
Yoon S M, Min H, Kim J B, et al. Surface engineering of ambient-air-processed cesium lead triiodide layers for efficient solar cells. Joule, 2021, 5, 183 doi: 10.1016/j.joule.2020.11.020
|
[39] |
Tan S, Yu B, Cui Y, et al. Temperature-reliable low-dimensional perovskites passivated black-phase CsPbI 3 toward stable and efficient photovoltaics. Angew Chem Int Ed, 2022, 61, e202201300 doi: 10.1002/ange.202201300
|
[40] |
Milić J V, Zakeeruddin S M, Grätzel M. Layered hybrid formamidinium lead iodide perovskites: challenges and opportunities. Acc Chem Res, 2021, 54, 2729 doi: 10.1021/acs.accounts.0c00879
|
[41] |
Zhou Q, Zuo C, Zhang Z, et al. F-containing cations improve the performance of perovskite solar cells. J Semicond, 2022, 43, 010202 doi: 10.1088/1674-4926/43/1/010202
|
[42] |
Huang Y, Li Y, Lim E L, et al. Stable layered 2D perovskite solar cells with an efficiency of over 19% via multifunctional interfacial engineering. J Am Chem Soc, 2021, 143, 3911 doi: 10.1021/jacs.0c13087
|
[43] |
Shao M, Bie T, Yang L, et al. Over 21% efficiency stable 2D perovskite solar cells. Adv Mater, 2022, 34, 2107211 doi: 10.1002/adma.202107211
|