J. Semicond. > 2022, Volume 43 > Issue 8 > 080202

RESEARCH HIGHLIGHTS

Compositional engineering for lead halide perovskite solar cells

Haoxin Wang1, Lixiu Zhang2, Ming Cheng1, and Liming Ding2,

+ Author Affiliations

 Corresponding author: Ming Cheng, mingcheng@ujs.edu.cn; Liming Ding, ding@nanoctr.cn

DOI: 10.1088/1674-4926/43/8/080202

PDF

Turn off MathJax



[1]
Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131, 6050 doi: 10.1021/ja809598r
[2]
National Renewable Energy Laboratory. Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html
[3]
Green M A, Dunlop E D, Hohl-Ebinger J, et al. Solar cell efficiency tables (Version 58). Prog Photovolt Res Appl, 2021, 29, 657 doi: 10.1002/pip.3444
[4]
Zhang L, Pan X, Liu L, et al. Star perovskite materials. J Semicond, 2022, 43, 030203 doi: 10.1088/1674-4926/43/3/030203
[5]
Zuo C, Bolink H J, Han H, et al. Advances in perovskite solar cells. Adv Sci, 2016, 3, 1500324 doi: 10.1002/advs.201500324
[6]
Noh J H, Im S H, Heo J H, et al. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett, 2013, 13, 1764 doi: 10.1021/nl400349b
[7]
Saliba M, Matsui T, Domanski K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 2016, 354, 206 doi: 10.1126/science.aah5557
[8]
Turren-Cruz S H, Hagfeldt A, Saliba M. Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture. Science, 2018, 362, 449 doi: 10.1126/science.aat3583
[9]
Luo D, Su R, Zhang W, et al. Minimizing non-radiative recombination losses in perovskite solar cells. Nat Rev Mater, 2020, 5, 44 doi: 10.1038/s41578-019-0151-y
[10]
Kim H S, Lee C R, Im J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep, 2012, 2, 591 doi: 10.1038/srep00591
[11]
Lee M M, Teuscher J, Miyasaka T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338, 643 doi: 10.1126/science.1228604
[12]
Jeon N J, Noh J H, Kim Y C, et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat Mater, 2014, 13, 897 doi: 10.1038/nmat4014
[13]
Stranks S D, Eperon G E, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342, 341 doi: 10.1126/science.1243982
[14]
Liu M, Johnston M B, Snaith H J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013, 501, 395 doi: 10.1038/nature12509
[15]
Fei C, Guo L, Li B, et al. Controlled growth of textured perovskite films towards high performance solar cells. Nano Energy, 2016, 27, 17 doi: 10.1016/j.nanoen.2016.06.041
[16]
Wang M, Li B, Siffalovic P, et al. Monolayer-like hybrid halide perovskite films prepared by additive engineering without antisolvents for solar cells. J Mater Chem A, 2018, 6, 15386 doi: 10.1039/C8TA04794D
[17]
Guo F, Qiu S, Hu J, et al. A generalized crystallization protocol for scalable deposition of high-quality perovskite thin films for photovoltaic applications. Adv Sci, 2019, 6, 1901067 doi: 10.1002/advs.201901067
[18]
Eperon G E, Stranks S D, Menelaou C, et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci, 2014, 7, 982 doi: 10.1039/c3ee43822h
[19]
Lu H, Krishna A, Zakeeruddin S M, et al. Compositional and interface engineering of organic-inorganic lead halide perovskite solar cells. iScience, 2020, 23, 101359 doi: 10.1016/j.isci.2020.101359
[20]
Lee J W, Kim D H, Kim H S, et al. Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv Energy Mater, 2015, 5, 1501310 doi: 10.1002/aenm.201501310
[21]
Jeon N J, Noh J H, Yang W S, et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature, 2015, 517, 476 doi: 10.1038/nature14133
[22]
Yang W S, Noh J H, Jeon N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348, 1234 doi: 10.1126/science.aaa9272
[23]
Yang C, Wang H, Miao Y, et al. Interfacial molecular doping and energy level alignment regulation for perovskite solar cells with efficiency exceeding 23%. ACS Energy Lett, 2021, 6, 2690 doi: 10.1021/acsenergylett.1c01126
[24]
Luo D, Yang W, Wang Z, et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science, 2018, 360, 1442 doi: 10.1126/science.aap9282
[25]
Yang W S, Park B W, Jung E H, et al. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science, 2017, 356, 1376 doi: 10.1126/science.aan2301
[26]
Saliba M, Matsui T, Seo J Y, et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci, 2016, 9, 1989 doi: 10.1039/C5EE03874J
[27]
Li F, Deng X, Qi F, et al. Regulating surface termination for efficient inverted perovskite solar cells with greater than 23% efficiency. J Am Chem Soc, 2020, 142, 20134 doi: 10.1021/jacs.0c09845
[28]
Yang S, Chen S, Mosconi E, et al. Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science, 2019, 365, 473 doi: 10.1126/science.aax3294
[29]
Wang J, Tang R, Zhang L, et al. Alkali metal cation engineering in organic/inorganic hybrid perovskite solar cells. J Semicond, 2022, 43, 010203 doi: 10.1088/1674-4926/43/1/010203
[30]
Ke L, Zhang L, Ding L. Suppressing photoinduced phase segregation in mixed halide perovskites. J Semicond, 2022, 43, 020201 doi: 10.1088/1674-4926/43/2/020201
[31]
Min H, Kim M, Lee S U, et al. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science, 2019, 366, 749 doi: 10.1126/science.aay7044
[32]
Wang Y, Zhang X, Shi Z, et al. Stabilizing α-phase FAPbI3 solar cells. J Semicond, 2022, 43, 040202 doi: 10.1088/1674-4926/43/4/040202
[33]
Kim M, Kim G H, Lee T K, et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule, 2019, 3, 2179 doi: 10.1016/j.joule.2019.06.014
[34]
Jeong J, Kim M, Seo J, et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature, 2021, 592, 381 doi: 10.1038/s41586-021-03406-5
[35]
Jia X, Zuo C, Tao S, et al. CsPb(I xBr1− x)3 solar cells. Sci Bull, 2019, 64, 1532 doi: 10.1016/j.scib.2019.08.017
[36]
Yu B, Zuo C, Shi J, et al. Defect engineering on all-inorganic perovskite solar cells for high efficiency. J Semicond, 2021, 42, 050203 doi: 10.1088/1674-4926/42/5/050203
[37]
Tian T, Yang M, Yang J, et al. Stabilizing black-phase CsPbI3 under over 70% humidity. J Semicond, 2022, 43, 030501 doi: 10.1088/1674-4926/43/3/030501
[38]
Yoon S M, Min H, Kim J B, et al. Surface engineering of ambient-air-processed cesium lead triiodide layers for efficient solar cells. Joule, 2021, 5, 183 doi: 10.1016/j.joule.2020.11.020
[39]
Tan S, Yu B, Cui Y, et al. Temperature-reliable low-dimensional perovskites passivated black-phase CsPbI3 toward stable and efficient photovoltaics. Angew Chem Int Ed, 2022, 61, e202201300 doi: 10.1002/ange.202201300
[40]
Milić J V, Zakeeruddin S M, Grätzel M. Layered hybrid formamidinium lead iodide perovskites: challenges and opportunities. Acc Chem Res, 2021, 54, 2729 doi: 10.1021/acs.accounts.0c00879
[41]
Zhou Q, Zuo C, Zhang Z, et al. F-containing cations improve the performance of perovskite solar cells. J Semicond, 2022, 43, 010202 doi: 10.1088/1674-4926/43/1/010202
[42]
Huang Y, Li Y, Lim E L, et al. Stable layered 2D perovskite solar cells with an efficiency of over 19% via multifunctional interfacial engineering. J Am Chem Soc, 2021, 143, 3911 doi: 10.1021/jacs.0c13087
[43]
Shao M, Bie T, Yang L, et al. Over 21% efficiency stable 2D perovskite solar cells. Adv Mater, 2022, 34, 2107211 doi: 10.1002/adma.202107211

Table 1.   Advances in composition engineering of lead halide perovskite solar cells.

YearComposition of perovskitesDevice structurePCE (%)Ref.
2009MAPbI3FTO/TiO2/perovskite/liquid electrolyte/Pt3.81[1]
2012MAPbI3FTO/c-TiO2/m-TiO2/perovskite/Spiro-OMeTAD/Au9.7[10]
2012MAPbI2ClFTO/c-TiO2/m-Al2O3/perovskite/Spiro-OMeTAD/Au10.9[11]
2017MA0.05FA0.95Pb(I0.95Br0.05)3FTO/c-TiO2/m-TiO2/perovskite/PTAA/Au22.1[25]
2020Cs0.05(MA0.05FA0.95)0.95Pb(I0.95Br0.05)3ITO/PTAA/perovskite/PI/C60/BCP/Ag23.37[27]
2021FAPbI3FTO/c-TiO2/m-TiO2/perovskite/OAI/Spiro-OMeTAD/Au25.6[34]
2022CsPbI3FTO/c-TiO2/perovskite/PTAI/Spiro-OMeTAD/Au21.0[39]
2022(4F-PEA)2FA4Pb5I16ITO/PTAA/perovskite/PC61BM/BCP/Ag21.07[43]
Note: c-TiO2, compact TiO2; m-TiO2, mesoporous TiO2; m-Al2O3, mesoporous Al2O3; PTAA, poly(triarylamine); OAI, octylammonium iodide; PI, piperazinium iodide; BCP, bathocuproine; PTAI, phenyltrimethylammonium iodide.
DownLoad: CSV
[1]
Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131, 6050 doi: 10.1021/ja809598r
[2]
National Renewable Energy Laboratory. Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html
[3]
Green M A, Dunlop E D, Hohl-Ebinger J, et al. Solar cell efficiency tables (Version 58). Prog Photovolt Res Appl, 2021, 29, 657 doi: 10.1002/pip.3444
[4]
Zhang L, Pan X, Liu L, et al. Star perovskite materials. J Semicond, 2022, 43, 030203 doi: 10.1088/1674-4926/43/3/030203
[5]
Zuo C, Bolink H J, Han H, et al. Advances in perovskite solar cells. Adv Sci, 2016, 3, 1500324 doi: 10.1002/advs.201500324
[6]
Noh J H, Im S H, Heo J H, et al. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett, 2013, 13, 1764 doi: 10.1021/nl400349b
[7]
Saliba M, Matsui T, Domanski K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 2016, 354, 206 doi: 10.1126/science.aah5557
[8]
Turren-Cruz S H, Hagfeldt A, Saliba M. Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture. Science, 2018, 362, 449 doi: 10.1126/science.aat3583
[9]
Luo D, Su R, Zhang W, et al. Minimizing non-radiative recombination losses in perovskite solar cells. Nat Rev Mater, 2020, 5, 44 doi: 10.1038/s41578-019-0151-y
[10]
Kim H S, Lee C R, Im J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep, 2012, 2, 591 doi: 10.1038/srep00591
[11]
Lee M M, Teuscher J, Miyasaka T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338, 643 doi: 10.1126/science.1228604
[12]
Jeon N J, Noh J H, Kim Y C, et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat Mater, 2014, 13, 897 doi: 10.1038/nmat4014
[13]
Stranks S D, Eperon G E, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342, 341 doi: 10.1126/science.1243982
[14]
Liu M, Johnston M B, Snaith H J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013, 501, 395 doi: 10.1038/nature12509
[15]
Fei C, Guo L, Li B, et al. Controlled growth of textured perovskite films towards high performance solar cells. Nano Energy, 2016, 27, 17 doi: 10.1016/j.nanoen.2016.06.041
[16]
Wang M, Li B, Siffalovic P, et al. Monolayer-like hybrid halide perovskite films prepared by additive engineering without antisolvents for solar cells. J Mater Chem A, 2018, 6, 15386 doi: 10.1039/C8TA04794D
[17]
Guo F, Qiu S, Hu J, et al. A generalized crystallization protocol for scalable deposition of high-quality perovskite thin films for photovoltaic applications. Adv Sci, 2019, 6, 1901067 doi: 10.1002/advs.201901067
[18]
Eperon G E, Stranks S D, Menelaou C, et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci, 2014, 7, 982 doi: 10.1039/c3ee43822h
[19]
Lu H, Krishna A, Zakeeruddin S M, et al. Compositional and interface engineering of organic-inorganic lead halide perovskite solar cells. iScience, 2020, 23, 101359 doi: 10.1016/j.isci.2020.101359
[20]
Lee J W, Kim D H, Kim H S, et al. Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv Energy Mater, 2015, 5, 1501310 doi: 10.1002/aenm.201501310
[21]
Jeon N J, Noh J H, Yang W S, et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature, 2015, 517, 476 doi: 10.1038/nature14133
[22]
Yang W S, Noh J H, Jeon N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348, 1234 doi: 10.1126/science.aaa9272
[23]
Yang C, Wang H, Miao Y, et al. Interfacial molecular doping and energy level alignment regulation for perovskite solar cells with efficiency exceeding 23%. ACS Energy Lett, 2021, 6, 2690 doi: 10.1021/acsenergylett.1c01126
[24]
Luo D, Yang W, Wang Z, et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science, 2018, 360, 1442 doi: 10.1126/science.aap9282
[25]
Yang W S, Park B W, Jung E H, et al. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science, 2017, 356, 1376 doi: 10.1126/science.aan2301
[26]
Saliba M, Matsui T, Seo J Y, et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci, 2016, 9, 1989 doi: 10.1039/C5EE03874J
[27]
Li F, Deng X, Qi F, et al. Regulating surface termination for efficient inverted perovskite solar cells with greater than 23% efficiency. J Am Chem Soc, 2020, 142, 20134 doi: 10.1021/jacs.0c09845
[28]
Yang S, Chen S, Mosconi E, et al. Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science, 2019, 365, 473 doi: 10.1126/science.aax3294
[29]
Wang J, Tang R, Zhang L, et al. Alkali metal cation engineering in organic/inorganic hybrid perovskite solar cells. J Semicond, 2022, 43, 010203 doi: 10.1088/1674-4926/43/1/010203
[30]
Ke L, Zhang L, Ding L. Suppressing photoinduced phase segregation in mixed halide perovskites. J Semicond, 2022, 43, 020201 doi: 10.1088/1674-4926/43/2/020201
[31]
Min H, Kim M, Lee S U, et al. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science, 2019, 366, 749 doi: 10.1126/science.aay7044
[32]
Wang Y, Zhang X, Shi Z, et al. Stabilizing α-phase FAPbI3 solar cells. J Semicond, 2022, 43, 040202 doi: 10.1088/1674-4926/43/4/040202
[33]
Kim M, Kim G H, Lee T K, et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule, 2019, 3, 2179 doi: 10.1016/j.joule.2019.06.014
[34]
Jeong J, Kim M, Seo J, et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature, 2021, 592, 381 doi: 10.1038/s41586-021-03406-5
[35]
Jia X, Zuo C, Tao S, et al. CsPb(I xBr1− x)3 solar cells. Sci Bull, 2019, 64, 1532 doi: 10.1016/j.scib.2019.08.017
[36]
Yu B, Zuo C, Shi J, et al. Defect engineering on all-inorganic perovskite solar cells for high efficiency. J Semicond, 2021, 42, 050203 doi: 10.1088/1674-4926/42/5/050203
[37]
Tian T, Yang M, Yang J, et al. Stabilizing black-phase CsPbI3 under over 70% humidity. J Semicond, 2022, 43, 030501 doi: 10.1088/1674-4926/43/3/030501
[38]
Yoon S M, Min H, Kim J B, et al. Surface engineering of ambient-air-processed cesium lead triiodide layers for efficient solar cells. Joule, 2021, 5, 183 doi: 10.1016/j.joule.2020.11.020
[39]
Tan S, Yu B, Cui Y, et al. Temperature-reliable low-dimensional perovskites passivated black-phase CsPbI3 toward stable and efficient photovoltaics. Angew Chem Int Ed, 2022, 61, e202201300 doi: 10.1002/ange.202201300
[40]
Milić J V, Zakeeruddin S M, Grätzel M. Layered hybrid formamidinium lead iodide perovskites: challenges and opportunities. Acc Chem Res, 2021, 54, 2729 doi: 10.1021/acs.accounts.0c00879
[41]
Zhou Q, Zuo C, Zhang Z, et al. F-containing cations improve the performance of perovskite solar cells. J Semicond, 2022, 43, 010202 doi: 10.1088/1674-4926/43/1/010202
[42]
Huang Y, Li Y, Lim E L, et al. Stable layered 2D perovskite solar cells with an efficiency of over 19% via multifunctional interfacial engineering. J Am Chem Soc, 2021, 143, 3911 doi: 10.1021/jacs.0c13087
[43]
Shao M, Bie T, Yang L, et al. Over 21% efficiency stable 2D perovskite solar cells. Adv Mater, 2022, 34, 2107211 doi: 10.1002/adma.202107211
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 885 Times PDF downloads: 80 Times Cited by: 0 Times

    History

    Received: 04 June 2022 Revised: Online: Accepted Manuscript: 07 June 2022Uncorrected proof: 07 June 2022Published: 01 August 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Haoxin Wang, Lixiu Zhang, Ming Cheng, Liming Ding. Compositional engineering for lead halide perovskite solar cells[J]. Journal of Semiconductors, 2022, 43(8): 080202. doi: 10.1088/1674-4926/43/8/080202 ****Haoxin Wang, Lixiu Zhang, Ming Cheng, Liming Ding, Compositional engineering for lead halide perovskite solar cells[J]. Journal of Semiconductors, 2022, 43(8), 080202 doi: 10.1088/1674-4926/43/8/080202
      Citation:
      Haoxin Wang, Lixiu Zhang, Ming Cheng, Liming Ding. Compositional engineering for lead halide perovskite solar cells[J]. Journal of Semiconductors, 2022, 43(8): 080202. doi: 10.1088/1674-4926/43/8/080202 ****
      Haoxin Wang, Lixiu Zhang, Ming Cheng, Liming Ding, Compositional engineering for lead halide perovskite solar cells[J]. Journal of Semiconductors, 2022, 43(8), 080202 doi: 10.1088/1674-4926/43/8/080202

      Compositional engineering for lead halide perovskite solar cells

      DOI: 10.1088/1674-4926/43/8/080202
      More Information
      • Haoxin Wang:received his PhD from Dalian University of Technology in 2020. Then he joined Jiangsu University as a postdoc. His research focuses on perovskite solar cells
      • Lixiu Zhang:got her BS from Soochow University in 2019. Now she is a PhD student at University of Chinese Academy of Sciences under the supervision of Prof. Liming Ding. Her research focuses on perovskite solar cells
      • Ming Cheng:received his PhD from Dalian University of Technology in 2014. He joined Institute for Energy Research, Jiangsu University as a professor since 2017. His research focuses on interface engineering in perovskite solar cells
      • Liming Ding:got his PhD from University of Science and Technology of China (was a joint student at Changchun Institute of Applied Chemistry, CAS). He started his research on OSCs and PLEDs in Olle Inganäs Lab in 1998. Later on, he worked at National Center for Polymer Research, Wright-Patterson Air Force Base and Argonne National Lab (USA). He joined Konarka as a Senior Scientist in 2008. In 2010, he joined National Center for Nanoscience and Technology as a full professor. His research focuses on innovative materials and devices. He is RSC Fellow, the nominator for Xplorer Prize, and the Associate Editor for Journal of Semiconductors
      • Corresponding author: mingcheng@ujs.edu.cnding@nanoctr.cn
      • Received Date: 2022-06-04
        Available Online: 2022-06-07

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return