ARTICLES

Simulation of MoS2 stacked nanosheet field effect transistor

Yang Shen, He Tian and Tianling Ren

+ Author Affiliations

 Corresponding author: He Tian, tianhe88@tsinghua.edu.cn; Tianling Ren, RenTL@tsinghua.edu.cn

PDF

Turn off MathJax

Abstract: Transition metal dichalcogenides are nowadays appealing to researchers for their excellent electronic properties. Vertical stacked nanosheet FET (NSFET) based on MoS2 are proposed and studied by Poisson equation solver coupled with semi-classical quantum correction model implemented in Sentaurus workbench. It is found that, the 2D stacked NSFET can largely suppress short channel effects with improved subthreshold swing and drain induced barrier lowering, due to the excellent electrostatics of 2D MoS2. In addition, small-signal capacitance is extracted and analyzed. The MoS2 based NSFET shows great potential to enable next generation electronics.

Key words: MoS2stacked nanosheet GAATCAD simulation



[1]
Cui J, Chen L, Kang C L, et al. A high-linearity InGaP/GaAs HBT power amplifier for IEEE 802.11a/N. J Semicond, 2013, 34, 065001 doi: 10.1088/1674-4926/34/6/065001
[2]
Loubet N, Hook T, Montanini P, et al. Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET. 2017 Symposium on VLSI Technology, 2017, T230
[3]
Bansal A K, Jain I, Hook T B, et al. Series resistance reduction in stacked nanowire FETs for 7-nm CMOS technology. IEEE J Electron Devices Soc, 2016, 4, 266 doi: 10.1109/JEDS.2016.2592183
[4]
Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nat Nanotechnol, 2011, 6, 147 doi: 10.1038/nnano.2010.279
[5]
Sebastian A, Pendurthi R, Choudhury T H, et al. Benchmarking monolayer MoS2 and WS2 field-effect transistors. Nat Commun, 2021, 12, 693 doi: 10.1038/s41467-020-20732-w
[6]
Das S, Sebastian A, Pop E, et al. Transistors based on two-dimensional materials for future integrated circuits. Nat Electron, 2021, 4, 786 doi: 10.1038/s41928-021-00670-1
[7]
Wu F, Tian H, Shen Y, et al. Vertical MoS2 transistors with sub-1-nm gate lengths. Nature, 2022, 603, 259 doi: 10.1038/s41586-021-04323-3
[8]
Wang S, Liu X, Zhou P. The road for 2D semiconductors in the silicon age. Adv Mater, 2021, 2021, e2106886 doi: 10.1002/adma.202106886
[9]
Wu F, Ren J, Yang Y, et al. A 10 nm short channel MoS2 transistor without the resolution requirement of photolithography. Adv Electron Mater, 2021, 7, 2170057 doi: 10.1002/aelm.202170057
[10]
Xie L, Liao M, Wang S, et al. Graphene-contacted ultrashort channel monolayer MoS2 transistors. Adv Mater, 2017, 29, 1702522 doi: 10.1002/adma.201702522
[11]
Allain A, Kang J H, Banerjee K, et al. Electrical contacts to two-dimensional semiconductors. Nat Mater, 2015, 14, 1195 doi: 10.1038/nmat4452
[12]
Shen P C, Su C, Lin Y X, et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature, 2021, 593, 211 doi: 10.1038/s41586-021-03472-9
[13]
Jariwala D, Sangwan V K, Late D J, et al. Band-like transport in high mobility unencapsulated single-layer MoS2 transistors. Appl Phys Lett, 2013, 102, 173107 doi: 10.1063/1.4803920
[14]
Chen H W, Li J Y, Chen X Z, et al. Dramatic switching behavior in suspended MoS2 field-effect transistors. Semicond Sci Technol, 2018, 33, 024001 doi: 10.1088/1361-6641/aaa222
[15]
Pon A, Carmel S, Bhattacharyya A, et al. Simulation of 2D layered material ballistic FETs using a hybrid methodology. 2019 IEEE International Conference on Electron Devices and Solid-State Circuits, 2019, 1 doi: 10.1109/EDSSC.2019.8754400
[16]
Sudarsanan A, Venkateswarlu S, Nayak K. Superior work function variability performance of horizontally stacked nanosheet FETs for sub-7-nm technology and beyond. 2020 4th IEEE Electron Devices Technology & Manufacturing Conference, 2020, 1 doi: 10.1109/EDTM47692.2020.9117974
[17]
Valasa S, Tayal S, Thoutam L R. Optimization of design space for vertically stacked junctionless nanosheet FET for analog/RF applications. Silicon, 2022, 1
[18]
Mohapatra E, Dash T P, Jena J, et al. Design study of gate-all-around vertically stacked nanosheet FETs for sub-7nm nodes. SN Appl Sci, 2021, 3, 540 doi: 10.1007/s42452-021-04539-y
[19]
Zebrev G I, Tselykovskiy A A, Batmanova D K, et al. Small-signal capacitance and current parameter modeling in large-scale high-frequency graphene field-effect transistors. IEEE Trans Electron Devices, 2013, 60, 1799 doi: 10.1109/TED.2013.2257793
[20]
Fang N, Nagashio K. Quantum-mechanical effect in atomically thin MoS2 FET. 2D Mater, 2019, 7, 014001 doi: 10.1088/2053-1583/ab42c0
Fig. 1.  (Color online) Energy band structures of MoS2 unit cell simulated with DFT showing the high symmetry points and a band gap EG = 1.78 eV.

Fig. 2.  (Color online) (a) Schematic diagram of a 3-stacked NSFET. (b) Bird eye view and cross-sectional view along the channel of simulated structure in Sentaurus. (c) Simulation framework of this work. (d) Calibration of transfer curves to experimental data in log and linear form. Experimental data are from a 3-stacked NSFET (LG = 10 nm).

Fig. 3.  (Color online) Electrostatic performance comparison of Si and MoS2 based 3-stacked NSFET. (a) Transfer characteristics. (b) Roll-off. (c) DIBL. (d) SS.

Fig. 4.  (Color online) (a) Comparison of Si and MoS2 based 3-stacked NSFET in terms of CGVG characteristic. (b) CG vs VG with different sheet widths. (c) CG vs VG with different number of stacks. (d) CG, CGS, CGD vs VD, separately.

Table 1.   Parameters used in this work.

EG (eV)Μ (cm2/(V·s))me*mh*T (nm)χ (eV)ε
1.78100~0.501m0~0.588m00.654.24
DownLoad: CSV
[1]
Cui J, Chen L, Kang C L, et al. A high-linearity InGaP/GaAs HBT power amplifier for IEEE 802.11a/N. J Semicond, 2013, 34, 065001 doi: 10.1088/1674-4926/34/6/065001
[2]
Loubet N, Hook T, Montanini P, et al. Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET. 2017 Symposium on VLSI Technology, 2017, T230
[3]
Bansal A K, Jain I, Hook T B, et al. Series resistance reduction in stacked nanowire FETs for 7-nm CMOS technology. IEEE J Electron Devices Soc, 2016, 4, 266 doi: 10.1109/JEDS.2016.2592183
[4]
Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nat Nanotechnol, 2011, 6, 147 doi: 10.1038/nnano.2010.279
[5]
Sebastian A, Pendurthi R, Choudhury T H, et al. Benchmarking monolayer MoS2 and WS2 field-effect transistors. Nat Commun, 2021, 12, 693 doi: 10.1038/s41467-020-20732-w
[6]
Das S, Sebastian A, Pop E, et al. Transistors based on two-dimensional materials for future integrated circuits. Nat Electron, 2021, 4, 786 doi: 10.1038/s41928-021-00670-1
[7]
Wu F, Tian H, Shen Y, et al. Vertical MoS2 transistors with sub-1-nm gate lengths. Nature, 2022, 603, 259 doi: 10.1038/s41586-021-04323-3
[8]
Wang S, Liu X, Zhou P. The road for 2D semiconductors in the silicon age. Adv Mater, 2021, 2021, e2106886 doi: 10.1002/adma.202106886
[9]
Wu F, Ren J, Yang Y, et al. A 10 nm short channel MoS2 transistor without the resolution requirement of photolithography. Adv Electron Mater, 2021, 7, 2170057 doi: 10.1002/aelm.202170057
[10]
Xie L, Liao M, Wang S, et al. Graphene-contacted ultrashort channel monolayer MoS2 transistors. Adv Mater, 2017, 29, 1702522 doi: 10.1002/adma.201702522
[11]
Allain A, Kang J H, Banerjee K, et al. Electrical contacts to two-dimensional semiconductors. Nat Mater, 2015, 14, 1195 doi: 10.1038/nmat4452
[12]
Shen P C, Su C, Lin Y X, et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature, 2021, 593, 211 doi: 10.1038/s41586-021-03472-9
[13]
Jariwala D, Sangwan V K, Late D J, et al. Band-like transport in high mobility unencapsulated single-layer MoS2 transistors. Appl Phys Lett, 2013, 102, 173107 doi: 10.1063/1.4803920
[14]
Chen H W, Li J Y, Chen X Z, et al. Dramatic switching behavior in suspended MoS2 field-effect transistors. Semicond Sci Technol, 2018, 33, 024001 doi: 10.1088/1361-6641/aaa222
[15]
Pon A, Carmel S, Bhattacharyya A, et al. Simulation of 2D layered material ballistic FETs using a hybrid methodology. 2019 IEEE International Conference on Electron Devices and Solid-State Circuits, 2019, 1 doi: 10.1109/EDSSC.2019.8754400
[16]
Sudarsanan A, Venkateswarlu S, Nayak K. Superior work function variability performance of horizontally stacked nanosheet FETs for sub-7-nm technology and beyond. 2020 4th IEEE Electron Devices Technology & Manufacturing Conference, 2020, 1 doi: 10.1109/EDTM47692.2020.9117974
[17]
Valasa S, Tayal S, Thoutam L R. Optimization of design space for vertically stacked junctionless nanosheet FET for analog/RF applications. Silicon, 2022, 1
[18]
Mohapatra E, Dash T P, Jena J, et al. Design study of gate-all-around vertically stacked nanosheet FETs for sub-7nm nodes. SN Appl Sci, 2021, 3, 540 doi: 10.1007/s42452-021-04539-y
[19]
Zebrev G I, Tselykovskiy A A, Batmanova D K, et al. Small-signal capacitance and current parameter modeling in large-scale high-frequency graphene field-effect transistors. IEEE Trans Electron Devices, 2013, 60, 1799 doi: 10.1109/TED.2013.2257793
[20]
Fang N, Nagashio K. Quantum-mechanical effect in atomically thin MoS2 FET. 2D Mater, 2019, 7, 014001 doi: 10.1088/2053-1583/ab42c0
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3221 Times PDF downloads: 442 Times Cited by: 0 Times

    History

    Received: 13 March 2022 Revised: 07 June 2022 Online: Accepted Manuscript: 23 April 2022Uncorrected proof: 24 April 2022Published: 01 August 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yang Shen, He Tian, Tianling Ren. Simulation of MoS2 stacked nanosheet field effect transistor[J]. Journal of Semiconductors, 2022, 43(8): 082002. doi: 10.1088/1674-4926/43/8/082002 ****Yang Shen, He Tian, Tianling Ren. 2022: Simulation of MoS2 stacked nanosheet field effect transistor. Journal of Semiconductors, 43(8): 082002. doi: 10.1088/1674-4926/43/8/082002
      Citation:
      Yang Shen, He Tian, Tianling Ren. Simulation of MoS2 stacked nanosheet field effect transistor[J]. Journal of Semiconductors, 2022, 43(8): 082002. doi: 10.1088/1674-4926/43/8/082002 ****
      Yang Shen, He Tian, Tianling Ren. 2022: Simulation of MoS2 stacked nanosheet field effect transistor. Journal of Semiconductors, 43(8): 082002. doi: 10.1088/1674-4926/43/8/082002

      Simulation of MoS2 stacked nanosheet field effect transistor

      doi: 10.1088/1674-4926/43/8/082002
      More Information
      • Yang Shen:received his B.S. degree from Hefei University of Technology in 2019. He is currently a PhD student under the supervision of Prof. He Tian at the School of Integrated Circuits, Tsinghua University. Her research focuses on devices based on 2D materials
      • He Tian:received the Ph.D. degree from the Institute of Microelectronics, Tsinghua University, in 2015. He is currently an associate professor in Tsinghua University. He was a recipient of the National Science Foundation for outstanding young scholars. He has co-authored over 100 papers and has over 5000 citations. He has been researching on various 2D materials-based novel nanodevices
      • Tianling Ren:received his Ph.D. degree in solid-state physics from the Department of Modern Applied Physics, Tsinghua University, Beijing, China, in 1997, where he has been a Full Professor with the Institute of Microelectronics since 2003. His main research interests include 2D material-based devices and novel nanoelectronic devices, intelligent sensors and integrated micro-electromechanical systems, and critical technology for advanced micro- and nanoelectronic
      • Corresponding author: tianhe88@tsinghua.edu.cnRenTL@tsinghua.edu.cn
      • Received Date: 2022-03-13
      • Revised Date: 2022-06-07
      • Available Online: 2022-04-23

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return