REVIEWS

Two-dimensional silicon nanomaterials for optoelectronics

Xuebiao Deng, Huai Chen and Zhenyu Yang

+ Author Affiliations

 Corresponding author: Zhenyu Yang, yangzhy63@mail.sysu.edu.cn

PDF

Turn off MathJax

Abstract: Silicon nanomaterials have been of immense interest in the last few decades due to their remarkable optoelectronic responses, elemental abundance, and higher biocompatibility. Two-dimensional silicon is one of the new allotropes of silicon and has many compelling properties such as quantum-confined photoluminescence, high charge carrier mobilities, anisotropic electronic and magnetic response, and non-linear optical properties. This review summarizes the recent advances in the synthesis of two-dimensional silicon nanomaterials with a range of structures (silicene, silicane, and multilayered silicon), surface ligand engineering, and corresponding optoelectronic applications.

Key words: two-dimensionalitysiliconnanomaterialssynthesissurface engineeringoptoelectronics



[1]
Heersche H B, Jarillo-Herrero P, Oostinga J B, et al. Bipolar supercurrent in graphene. Nature, 2007, 446(7131), 56 doi: 10.1038/nature05555
[2]
Du X, Skachko I, Barker A, et al. Approaching ballistic transport in suspended graphene. Nat Nanotechnol, 2008, 3(8), 491 doi: 10.1038/nnano.2008.199
[3]
Wang F, Zhang Y, Tian C, et al. Gate-variable optical transitions in graphene. Science, 2008, 320(5873), 206 doi: 10.1126/science.1152793
[4]
Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887), 385 doi: 10.1126/science.1157996
[5]
Scheuermann G M, Rumi L, Steurer P, et al. Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki−Miyaura Coupling reaction. J Am Chem Soc, 2009, 131(23), 8262 doi: 10.1021/ja901105a
[6]
Lu Y, Lu Y, Niu Z, et al. Graphene-based nanomaterials for sodium-ion batteries. Ad Energy Mater, 2018, 8(17), 1702469 doi: 10.1002/aenm.201702469
[7]
Lin L, Peng H, Liu Z. Synthesis challenges for graphene industry. Nat Mater, 2019, 18(6), 520 doi: 10.1038/s41563-019-0341-4
[8]
Deng X, Zheng X, Yuan T, et al. Ligand impact of silicanes as anode materials for lithium-ion batteries. Chem Mater, 2021, 33(23), 9357 doi: 10.1021/acs.chemmater.1c03254
[9]
Xu H, Chen H, Gao C. Advanced graphene materials for sodium/potassium/aluminum-ion batteries. ACS Mater Lett, 2021, 3(8), 1221 doi: 10.1021/acsmaterialslett.1c00280
[10]
Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol, 2012, 7(11), 699 doi: 10.1038/nnano.2012.193
[11]
Mak K F, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat Photonics, 2016, 10(4), 216 doi: 10.1038/nphoton.2015.282
[12]
Meng J L, Wang T Y, Chen L, et al. Energy-efficient flexible photoelectric device with 2D/0D hybrid structure for bio-inspired artificial heterosynapse application. Nano Energy, 2021, 83, 105815 doi: 10.1016/j.nanoen.2021.105815
[13]
Meng J L, Wang T Y, He Z Y, et al. Flexible boron nitride-based memristor for in situ digital and analogue neuromorphic computing applications. Mater Horiz, 2021, 8(2), 538 doi: 10.1039/D0MH01730B
[14]
Wang C, Xu X, Pi X, et al. Neuromorphic device based on silicon nanosheets. Nat Commun, 2022, 13(1), 5216 doi: 10.1038/s41467-022-32884-y
[15]
Meng J, Wang T, Zhu H, et al. Integrated in-sensor computing optoelectronic device for environment-adaptable artificial retina perception application. Nano Lett, 2022, 22(1), 81 doi: 10.1021/acs.nanolett.1c03240
[16]
Cahangirov S, Topsakal M, Aktürk E, et al. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys Rev Lett, 2009, 102(23), 236804 doi: 10.1103/PhysRevLett.102.236804
[17]
Guzmán-Verri G G, Lew Yan Voon L C. Electronic structure of silicon-based nanostructures. Phys Rev B, 2007, 76(7), 075131 doi: 10.1103/PhysRevB.76.075131
[18]
Morishita T, Russo S P, Snook I K, et al. First-principles study of structural and electronic properties of ultrathin silicon nanosheets. Phys Rev B, 2010, 82(4), 045419 doi: 10.1103/PhysRevB.82.045419
[19]
Liu C C, Feng W, Yao Y. Quantum spin Hall effect in silicene and two-dimensional germanium. Phys Rev Lett, 2011, 107(7), 076802 doi: 10.1103/PhysRevLett.107.076802
[20]
Spencer M J S, Morishita T, Snook I K. Reconstruction and electronic properties of silicon nanosheets as a function of thickness. Nanoscale, 2012, 4(9), 2906 doi: 10.1039/c2nr30100h
[21]
Chigo Anota E, Bautista Hernández A, Castro M, et al. Investigating the electronic properties of silicon nanosheets by first-principles calculations. J Molecul Model, 2012, 18(5), 2147 doi: 10.1007/s00894-011-1235-9
[22]
Kamal C, Chakrabarti A, Banerjee A, et al. Silicene beyond mono-layers—different stacking configurations and their properties. J Physics: Conden Matter, 2013, 25(8), 085508 doi: 10.1088/0953-8984/25/8/085508/meta
[23]
Gao J, Zhang J, Liu H, et al. Structures, mobilities, electronic and magnetic properties of point defects in silicene. Nanoscale, 2013, 5(20), 9785 doi: 10.1039/C3NR02826G
[24]
Li S, Wu Y, Liu W, et al. Control of band structure of van der Waals heterostructures: Silicene on ultrathin silicon nanosheets. Chem Phys Lett, 2014, 609, 161 doi: 10.1016/j.cplett.2014.06.047
[25]
Roman R E, Cranford S W. Mechanical properties of silicene. Comput Mater Sci, 2014, 82, 50 doi: 10.1016/j.commatsci.2013.09.030
[26]
Quhe R, Fei R, Liu Q, et al. Tunable and sizable band gap in silicene by surface adsorption. Sci Rep, 2012, 2(1), 853 doi: 10.1038/srep00853
[27]
Ryan B J, Hanrahan M P, Wang Y, et al. Silicene, siloxene, or silicane? Revealing the structure and optical properties of silicon nanosheets derived from calcium disilicide. Chem Mater, 2020, 32(2), 795 doi: 10.1021/acs.chemmater.9b04180
[28]
De Padova P, Kubo O, Olivieri B, et al. Multilayer silicene nanoribbons. Nano Lett, 2012, 12(11), 5500 doi: 10.1021/nl302598x
[29]
Feng B, Ding Z, Meng S, et al. Evidence of silicene in honeycomb structures of silicon on Ag(111). Nano Lett, 2012, 12(7), 3507 doi: 10.1021/nl301047g
[30]
Kim S W, Lee J, Sung J H, et al. Two-dimensionally grown single-crystal silicon nanosheets with tunable visible-light emissions. ACS Nano, 2014, 8(7), 6556 doi: 10.1021/nn501683f
[31]
Tao L, Cinquanta E, Chiappe D, et al. Silicene field-effect transistors operating at room temperature. Nat Nanotechnol, 2015, 10(3), 227 doi: 10.1038/nnano.2014.325
[32]
Lyuleeva A, Helbich T, Rieger B, et al. Polymer-silicon nanosheet composites: bridging the way to optoelectronic applications. J Phys D, 2017, 50(13), 135106 doi: 10.1088/1361-6463/aa5005
[33]
Berger C, Song Z, Li T, et al. Ultrathin epitaxial graphite:   2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B, 2004, 108(52), 19912 doi: 10.1021/jp040650f
[34]
Sutter P W, Flege J I, Sutter E A. Epitaxial graphene on ruthenium. Nat Mater, 2008, 7(5), 406 doi: 10.1038/nmat2166
[35]
Hao R, Qian W, Zhang L, et al. Aqueous dispersions of TCNQ-anion-stabilized graphene sheets. Chem Commun, 2008, 48, 6576 doi: 10.1039/B816971C
[36]
Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30), 10451 doi: 10.1073/pnas.0502848102
[37]
Wöhler F. Ueber verbindungen des siliciums mit sauerstoff und wasserstoff. Justus Liebigs Annalen der Chemie, 1863, 127(3), 257 doi: 10.1002/jlac.18631270302
[38]
Weiss A, Beil G, Meyer H. The topochemical reaction of CaSi2 to a two-dimensional subsiliceous acid Si6H3(OH)3 (= Kautsky' Siloxene). J Zeitschrift für Naturforschung B, 1980, 35, 25 doi: doi.org/10.1515/znb-1980-0108
[39]
Dahn J R, Way B M, Fuller E, et al. Structure of siloxene and layered polysilane (Si6H6). Phys Rev B, 1993, 48(24), 17872 doi: 10.1103/PhysRevB.48.17872
[40]
Min H, Hill J E, Sinitsyn N A, et al. Intrinsic and Rashba spin-orbit interactions in graphene sheets. Phys Rev B, 2006, 74(16), 165310 doi: 10.1103/PhysRevB.74.165310
[41]
Ezawa M. A topological insulator and helical zero mode in silicene under an inhomogeneous electric field. New J Phys, 2012, 14(3), 033003 doi: 10.1088/1367-2630/14/3/033003
[42]
Liu J, Yang Y, Lyu P, et al. Few-layer silicene nanosheets with superior lithium-storage properties. Adv Mater, 2018, 30(26), 1800838 doi: 10.1002/adma.201800838
[43]
Linti G. Silicon chemistry. From the Atom to Extended Systems. Edited by Peter Jutzi and Ulrich Schubert. Angew Chem Int Ed, 2004, 43(23), 135 doi: 10.1002/anie.200385120
[44]
Okamoto H, Kumai Y, Sugiyama Y, et al. Silicon nanosheets and their self-assembled regular stacking structure. J Am Chem Soc, 2010, 132(8), 2710 doi: 10.1021/ja908827z
[45]
Li F, Lu R, Yao Q, et al. Geometric and electronic structures as well as thermodynamic stability of hexyl-modified silicon nanosheet. J Phys Chem C, 2013, 117(25), 13283 doi: 10.1021/jp402875t
[46]
De Padova P, Generosi A, Paci B, et al. Multilayer silicene: clear evidence. 2D Mater, 2016, 3(3), 031011 doi: 10.1088/2053-1583/3/3/031011
[47]
Grazianetti C, Cinquanta E, Tao L, et al. Silicon nanosheets: Crossover between multilayer silicene and diamond-like growth regime. ACS Nano, 2017, 11(3), 3376 doi: 10.1021/acsnano.7b00762
[48]
Chen H D, Chien K H, Lin C Y, et al. Few-layer silicon films on the Ag(111) surface. J Phys Chem C, 2016, 120(5), 2698 doi: 10.1021/acs.jpcc.5b10208
[49]
Padova P D, Generosi A, Paci B, et al. Corrigendum: Multilayer silicene: clear evidence. 2D Mater, 2016, 3(4), 049501 doi: 10.1088/2053-1583/3/4/049501
[50]
Okamoto H, Sugiyama Y, Nakano H. Synthesis and modification of silicon nanosheets and other silicon nanomaterials. Chem Eur J, 2011, 17(36), 9864 doi: 10.1002/chem.201100641
[51]
Chen J, Du Y, Li Z, et al. Delocalized surface state in epitaxial Si(111) film with spontaneous ${\sqrt{3}}$  ×  ${\sqrt{3}}$ superstructure. Sci Rep, 2015, 5(1), 13590 doi: 10.1038/srep13590
[52]
Chen L, Liu C C, Feng B, et al. Evidence for Dirac fermions in a honeycomb lattice based on silicon. Phys Rev Lett, 2012, 109(5), 056804 doi: 10.1103/PhysRevLett.109.056804
[53]
De Padova P, Vogt P, Resta A, et al. Evidence of Dirac fermions in multilayer silicene. Appl Phys Lett, 2013, 102(16), 163106 doi: 10.1063/1.4802782
[54]
Hwang G C, Blom D A, Vogt T, et al. Pressure-driven phase transitions and reduction of dimensionality in 2D silicon nanosheets. Nat Commun, 2018, 9(1), 5412 doi: 10.1038/s41467-018-07832-4
[55]
Nakano H. Synthesis and modification of two-dimensional crystalline silicon nanosheets. J Ceram Soc Jpn, 2014, 122(1429), 748 doi: 10.2109/jcersj2.122.748
[56]
Nakano H, Ikuno T. Soft chemical synthesis of silicon nanosheets and their applications. Appl Phys Rev, 2016, 3(4), 040803 doi: 10.1063/1.4952442
[57]
Yu X, Xue F, Huang H, et al. Synthesis and electrochemical properties of silicon nanosheets by DC arc discharge for lithium-ion batteries. Nanoscale, 2014, 6(12), 6860 doi: 10.1039/C3NR06418B
[58]
Ryu J, Chen T, Bok T, et al. Mechanical mismatch-driven rippling in carbon-coated silicon sheets for stress-resilient battery anodes. Nat Commun, 2018, 9(1), 2924 doi: 10.1038/s41467-018-05398-9
[59]
Lalmi B, Oughaddou H, Enriquez H, et al. Epitaxial growth of a silicene sheet. Appl Phys Lett, 2010, 97(22), 223109 doi: 10.1063/1.3524215
[60]
Meng L, Wang Y, Zhang L, et al. Buckled silicene formation on Ir(111). Nano Lett, 2013, 13(2), 685 doi: 10.1021/nl304347w
[61]
Fleurence A, Friedlein R, Ozaki T, et al. Experimental evidence for epitaxial silicene on diboride thin films. Phys Rev Lett, 2012, 108(24), 245501 doi: 10.1103/PhysRevLett.108.245501
[62]
Warner J H, Rümmeli M H, Bachmatiuk A, et al. Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation. ACS Nano, 2010, 4(3), 1299 doi: 10.1021/nn901648q
[63]
Xu J, Zhang L, Shi R, et al. Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. J Mater Chem A, 2013, 1(46), 14766 doi: 10.1039/c3ta13188b
[64]
Ding Y, Chen Y P, Zhang X, et al. Controlled intercalation and chemical exfoliation of layered metal –organic frameworks using a chemically labile intercalating agent. J Am Chem Soc, 2017, 139(27), 9136 doi: 10.1021/jacs.7b04829
[65]
Yamanaka S, Matsu-ura H, Ishikawa M. New deintercalation reaction of calcium from calcium disilicide. Synthesis of layered polysilane. Mater Res Bull, 1996, 31(3), 307 doi: 10.1016/0025-5408(95)00195-6
[66]
Nakano H, Mitsuoka T, Harada M, et al. Soft synthesis of single-crystal silicon monolayer sheets. Angew Chem Int Ed, 2006, 45(38), 6303 doi: 10.1002/anie.200600321
[67]
Lang J, Ding B, Zhang S, et al. Scalable synthesis of 2D Si nanosheets. Adv Mater, 2017, 29(31), 1701777 doi: 10.1002/adma.201701777
[68]
Qiu J, Fu H, Xu Y, et al. From silicene to half-silicane by hydrogenation. ACS Nano, 2015, 9(11), 11192 doi: 10.1021/acsnano.5b04722
[69]
Wang W, Olovsson W, Uhrberg R I G. Band structure of hydrogenated silicene on Ag(111): Evidence for half-silicane. Phys Rev B, 2016, 93(8), 081406 doi: 10.1103/PhysRevB.93.081406
[70]
Liao W S, Lee S C. Water-induced room-temperature oxidation of Si–H and –Si–Si– bonds in silicon oxide. J Appl Phys, 1996, 80(2), 1171 doi: 10.1063/1.362915
[71]
Pereira R N, Rowe D J, Anthony R J, et al. Oxidation of freestanding silicon nanocrystals probed with electron spin resonance of interfacial dangling bonds. Phys Rev B, 2011, 83(15), 155327 doi: 10.1103/PhysRevB.83.155327
[72]
Acun A, Poelsema B, Zandvliet H J W, et al. The instability of silicene on Ag(111). Appl Phys Lett, 2013, 103(26), 263119 doi: 10.1063/1.4860964
[73]
Cottrell T L. The strengths of chemical bonds. Butterworths Scientific, 1958
[74]
Song J H, Sailor M J. Dimethyl sulfoxide as a mild oxidizing agent for porous silicon and its effect on photoluminescence. Inorg Chem, 1998, 37(13), 3355 doi: 10.1021/ic971587u
[75]
Dasog M, Yang Z, Regli S, et al. Chemical insight into the origin of red and blue photoluminescence arising from freestanding silicon nanocrystals. ACS Nano, 2013, 7(3), 2676 doi: 10.1021/nn4000644
[76]
Ohshita J, Yamamoto K, Tanaka D, et al. Preparation and photocurrent generation of silicon nanosheets with aromatic substituents on the surface. J Phys Chem C, 2016, 120(20), 10991 doi: 10.1021/acs.jpcc.6b03014
[77]
Helbich T, Lyuleeva A, Ludwig T, et al. One-step synthesis of photoluminescent covalent polymeric nanocomposites from 2D silicon nanosheets. Adv Funct Mater, 2016, 26(37), 6711 doi: 10.1002/adfm.201602137
[78]
Linford M R, Chidsey C E D. Alkyl monolayers covalently bonded to silicon surfaces. J Am Chem Soc, 1993, 115(26), 12631 doi: 10.1021/ja00079a071
[79]
Terry J, Linford M R, Wigren C, et al. Determination of the bonding of alkyl monolayers to the Si(111) surface using chemical-shift, scanned-energy photoelectron diffraction. Appl Phys Lett, 1997, 71(8), 1056 doi: 10.1063/1.119726
[80]
Terry J, Linford M R, Wigren C, et al. Alkyl-terminated Si(111) surfaces: A high-resolution, core level photoelectron spectroscopy study. J Appl Phys, 1998, 85(1), 213 doi: 10.1063/1.369473
[81]
Effenberger F, Götz G, Bidlingmaier B, et al. Photoactivated preparation and patterning of self-assembled monolayers with 1-alkenes and aldehydes on silicon hydride surfaces. Angew Chem Int Ed, 1998, 37(18), 2462 doi: 10.1002/(SICI)1521-3773(19981002)37:18<2462::AID-ANIE2462>3.0.CO;2-R
[82]
Cicero R L, Linford M R, Chidsey C E D. Photoreactivity of unsaturated compounds with hydrogen-terminated silicon(111). Langmuir, 2000, 16(13), 5688 doi: 10.1021/la9911990
[83]
Stewart M P, Buriak J M. Exciton-mediated hydrosilylation on photoluminescent nanocrystalline silicon. J Am Chem Soc, 2001, 123(32), 7821 doi: 10.1021/ja011116d
[84]
Eves B J, Lopinski G P. Formation of organic monolayers on silicon via gas-phase photochemical reactions. Langmuir, 2006, 22(7), 3180 doi: 10.1021/la052960a
[85]
Wang X, Ruther R E, Streifer J A, et al. UV-induced grafting of alkenes to silicon surfaces: Photoemission versus excitons. J Am Chem Soc, 2010, 132(12), 4048 doi: 10.1021/ja910498z
[86]
Helbich T, Lyuleeva A, Höhlein I M D, et al. Radical-induced hydrosilylation reactions for the functionalization of two-dimensional hydride terminated silicon nanosheets. Chem Eur J, 2016, 22(18), 6194 doi: 10.1002/chem.201505134
[87]
Lyuleeva A, Holzmüller P, Helbich T, et al. Charge transfer doping in functionalized silicon nanosheets/P3HT hybrid material for applications in electrolyte-gated field-effect transistors. J Mater Chem C, 2018, 6(27), 7343 doi: 10.1039/C8TC01484A
[88]
Helbich T, Kloberg M J, Sinelnikov R, et al. Diaryliodonium salts as hydrosilylation initiators for the surface functionalization of silicon nanomaterials and their collaborative effect as ring opening polymerization initiators. Nanoscale, 2017, 9(23), 7739 doi: 10.1039/C7NR01559C
[89]
Kloberg M J, Helbich T, Rieger B. Silicon nanosheets as co-initiators for diaryliodonium induced radical and cationic polymerization. Nanotechnology, 2018, 30(7), 075602 doi: 10.1088/1361-6528/aaf3f2/meta
[90]
Sudo T, Asao N, Gevorgyan V, et al. Lewis acid catalyzed highly regio- and stereocontrolled trans-hydrosilylation of alkynes and allenes. J Org Chem, 1999, 64(7), 2494 doi: 10.1021/jo9824293
[91]
Buriak J M, Allen M J. Lewis acid mediated functionalization of porous silicon with substituted alkenes and alkynes. J Am Chem Soc, 1998, 120(6), 1339 doi: 10.1021/ja9740125
[92]
Purkait T K, Iqbal M, Wahl M H, et al. Borane-catalyzed room-temperature hydrosilylation of alkenes/alkynes on silicon nanocrystal surfaces. J Am Chem Soc, 2014, 136(52), 17914 doi: 10.1021/ja510120e
[93]
Helbich T, Lyuleeva A, Marx P, et al. Lewis acid induced functionalization of photoluminescent 2D silicon nanosheets for the fabrication of functional hybrid films. Adv Funct Mater, 2017, 27(21), 1606764 doi: 10.1002/adfm.201606764
[94]
Sugiyama Y, Okamoto H, Mitsuoka T, et al. Synthesis and optical properties of monolayer organosilicon nanosheets. J Am Chem Soc, 2010, 132(17), 5946 doi: 10.1021/ja100919d
[95]
Ohashi M, Shirai S, Nakano H. Direct chemical synthesis of benzyl-modified silicane from calcium disilicide. Chem Mater, 2019, 31(13), 4720 doi: 10.1021/acs.chemmater.9b00715
[96]
Kumai Y, Kadoura H, Sudo E, et al. Si–C composite anode of layered polysilane (Si6H6) and sucrose for lithium ion rechargeable batteries. J Mater Chem, 2011, 21(32), 11941 doi: 10.1039/c1jm10532a
[97]
Sun L, Wang B, Wang Y. A novel silicon carbide nanosheet for high-performance humidity sensor. Adv Mater Interfaces, 2018, 5(6), 1701300 doi: 10.1002/admi.201701300
[98]
Lyuleeva A, Helbich T, Bobinger M, et al. Functionalized and oxidized silicon nanosheets: Customized design for enhanced sensitivity towards relative humidity. Sens Actuators B, 2019, 283, 451 doi: 10.1016/j.snb.2018.11.049
[99]
Ryu J, Jang Y J, Choi S, et al. All-in-one synthesis of mesoporous silicon nanosheets from natural clay and their applicability to hydrogen evolution. NPG Asia Mater, 2016, 8(3), e248 doi: 10.1038/am.2016.35
[100]
Wang S, Wang C, Pan W, et al. Two-dimensional silicon for (photo)catalysis. Sol RRL, 2020, 2000392 doi: 10.1002/solr.202000392
[101]
Liu F, Liu C C, Wu K, et al. d+id′ chiral superconductivity in bilayer silicene. Phys Rev Lett, 2013, 111(6), 066804 doi: 10.1103/PhysRevLett.111.066804
[102]
Ezawa M. Valley-polarized metals and quantum anomalous Hall effect in silicene. Phys Rev Lett, 2012, 109(5), 055502 doi: 10.1103/PhysRevLett.109.055502
[103]
Li X, Mullen J T, Jin Z, et al. Intrinsic electrical transport properties of monolayer silicene and MoS2 from first principles. Phys Rev B, 2013, 87(11), 115418 doi: 10.1103/PhysRevB.87.115418
[104]
Ding Y, Wang Y. Electronic structures of silicene fluoride and hydride. Appl Phys Lett, 2012, 100(8), 083102 doi: 10.1063/1.3688035
[105]
Wang R, Pi X, Ni Z, et al. Density functional theory study on organically surface-modified silicene. RSC Adv, 2015, 5(43), 33831 doi: 10.1039/C5RA05751E
[106]
Ni Z, Liu Q, Tang K, et al. Tunable bandgap in silicene and germanene. Nano Lett, 2012, 12(1), 113 doi: 10.1021/nl203065e
[107]
Nakano H, Tanaka Y, Yamamoto K, et al. Silicanes modified by conjugated substituents for optoelectronic devices. Adv Opt Mater, 2019, 7(18), 1900696 doi: 10.1002/adom.201900696
[108]
Dasog M, Kehrle J, Rieger B, et al. Silicon nanocrystals and silicon-polymer hybrids: Synthesis, surface engineering, and applications. Angew Chem Int Ed, 2016, 55(7), 2322 doi: 10.1002/anie.201506065
[109]
Karar D, Bandyopadhyay N R, Pramanick A K, et al. Quasi-two-dimensional luminescent silicon nanosheets. J Phys Chem C, 2018, 122(33), 18912 doi: 10.1021/acs.jpcc.8b03988
[110]
Ezawa M. Quasi-topological insulator and trigonal warping in gated bilayer silicene. J Phys Soc Jpn, 2012, 81(10), 104713 doi: 10.1143/JPSJ.81.104713
[111]
Huang B, Deng H X, Lee H, et al. Exceptional optoelectronic properties of hydrogenated bilayer silicene. Phys Rev X, 2014, 4(2), 021029 doi: 10.1103/PhysRevX.4.021029
[112]
Hussain T, Chakraborty S, Ahuja R. Metal-functionalized silicene for efficient hydrogen storage. ChemPhysChem, 2013, 14(15), 3463 doi: 10.1002/cphc.201300548
[113]
Pi X, Ni Z, Liu Y, et al. Density functional theory study on boron- and phosphorus-doped hydrogen-passivated silicene. Phys Chem Chem Phys, 2015, 17(6), 4146 doi: 10.1039/C4CP05196C
Fig. 1.  (Color online) Schematic illustration of three types of 2D silicon nanomaterials. Silicene refers to the monolayered hexagonal lattice with sp2-sp3 hybridized Si atoms; silicane refers to the monolayered hexagonal lattice with sp3 hybridized Si atoms fully or partially passivated by ligands such as hydride, hydroxyl, alkyl groups; multilayered silicon nanosheet refers to the diamond-structured silicon with a thickness of a few atomic Si layers.

Fig. 2.  (Color online) Preparation of 2D silicon nanomaterials. (a, b) Schematic illustration of two general synthetic approaches: epitaxial growth and chemical exfoliation. (c) STM image of a single-layered silicene island on Ag(111). (d) High-resolution STM image of monolayer silicene terrace showing the $\sqrt{3}$ × $\sqrt{3}$ honeycomb superstructure. Reprinted with permission from Ref. [29]. Copyright 2012 by American Chemical Society. (e) Scanning electron microscopic (SEM) images of freestanding MSNs prepared using the epitaxial growth method. Reprinted with permission from Ref. [30]. Copyright 2014 by American Chemical Society. (f) SEM image of layered silicanes obtained from the chemical exfoliation of CaSi2. Reprinted with permission from Ref. [27]. Copyright 2020 by American Chemical Society.

Fig. 3.  (Color online) Schematic illustration of some recently reported surface modification approaches of 2DSis. R = alkyl/aryl group; Ph = phenyl; Bn = benzyl.

Fig. 4.  (Color online) Material properties of surface-modified 2DSis. (a) Structural models of regularly stacked (C10-Sin). (b) AFM phase image of decylamine-functionalized silicane (C10-Sin) on a highly oriented pyrolytic graphite plate. (c) X-ray diffraction (XRD) pattern of C10-Sin with strong signals corresponding to the layered structure of silicane. (d) PL spectrum of the amine-passivated silicane. Reprinted with permission from Ref. [44]. Copyright 2010 by American Chemical Society. (e) Hybrid materials containing silicanes and polymers shows enhanced materials stability and PL property under continuous UV irradiation. Reprinted with permission from Ref. [77]. Copyright 2016 by Wiley-VCH.

Fig. 5.  Proposed mechanisms of the hydrosilylation reaction on 2DSis[86, 93].

Fig. 6.  (Color online) Surface modification of silicanes using single-step approaches. (a) Side view and (b) top view of the model structure of silicane partially passivated by hydride and phenyl groups (Si6H4Ph2). (c) PL spectra of Si6H4Ph2 thin film and solution (solvent:1,4-dioxane, excitation wavelength: 350 nm). Inset: blue emitting Si6H4Ph2 dispersed in 1,4-dioxane under 365 nm UV irradiation. Reprinted with permission from Ref. [94]. Copyright 2010 by American Chemical Society. (d) Hydride- and benzyl-passivated silicane directly made by the solvent-assisted chemical exfoliation of CaSi2 (e) Diffuse reflectance spectra of hydride-passivated (black) and benzyl-passivated 2DSis (red). Inset: Tauc plots of both 2DSi samples. Reprinted with permission from Ref. [95]. Copyright 2019 by American Chemical Society.

Fig. 7.  (Color online) Electronic structures of pristine and surface-modified silicene. (a) Monte Carlo simulation results of temperature-dependent drift velocity behaviors of monolayer silicene (with or without out-of-plane acoustic (ZA)): 50 K (square), 100 K (triangle), 200 K (diamond), and 300 K (circle). Reprinted with permission from Ref. [103]. Copyright 2013 by American Physical Society. (b–g) The partial density of states of various types of surface-modified silicene: (b) pristine (i.e., “naked”) silicene, (c) hydride-terminated silicene, (d) hydrosilylated silicene, (e) phenylated silicene, (f) alkoxylated silicene, and (g) aminated silicene. Reprinted with permission from Ref. [105]. Copyright 2015 by Royal Society of Chemistry.

Fig. 8.  (Color online) Preparation and photocurrent response of 2DSi-based devices. (a) Fabrication of photosensitive device based on silicane/polystyrene hybrids. (b, c) The plots of drain current versus time and drain current versus drain voltage of the devices fabricated following the procedures shown in (a). The inset in (c) shows a picture of the device setup under light irradiation. Reprinted with permission from Ref. [32]. Copyright 2017 by IOP Publishing Ltd.

Fig. 9.  (Color online) Device architectures and performance of 2DSi-based optoelectronics. (a) Schematic illustration of the fabrication processes of the first silicene-based transistors with highlighted key steps. (b) Corresponding R versus VgVdirac plot of silicene transistor showing the device evidence of the Dirac-like band structure of silicene. Reprinted with permission from Ref. [31]. Copyright 2015 by Macmillan Publishers Limited. (c) Device performance of SGFET using the hybrid active material containing dodecyl-functionalized silicane (SiNS-C12H25) and P3HT polymer. Inset: the schematic of the device architecture. (d) Output drain current-voltage curves of the device shown in Fig. (c). Inset: AFM image of the active layer. Reprinted with permission from Ref. [93]. Copyright 2017 by Wiley-VCH. (e) Device performance of SGFET based on silicane functionalized with various types of ligands: dodecane (C12H25), phenylacetylene (PhAC), and 2-ethinyl-3-hexylthiophene (ThAC). The device architecture is shown in the inset figure. Reprinted with permission from Ref. [87]. Copyright 2018 by Royal Society of Chemistry. (f) Schematic (top) and optical image (bottom) of the device architecture of phototransistor based on organo-modified silicanes (OMS)/graphene hybrids. (g) Corresponding IDSVG curves of the devices with and without the presence of OMS. (h) Photocurrent response of the OMS/graphene hybrid phototransistors. Reprinted with permission from Ref. [107]. Copyright 2019 by Wiley-VCH.

Fig. 10.  (Color online) 2DSi-based LEDs. (a) Transmission electron microscopic images and corresponding diffraction pattern (inset) of MSNs used for LED application. (b) Real color images of the thickness-controlled MSNs with emission ranging from blue to red and corresponding PL spectra as a function of growth time. (c) Optical bandgap of MSNs as a function of the thickness determined from PL and photocurrent measurements. Inset: the optical bandgap as a function of thickness. (d) Schematic of the hybrid LEDs using MSNs as the active materials. (e) Electroluminescence (EL) spectrum of the MSN-based devices using mixed MSNs with various thicknesses. (f) EL spectrum of the SiNSs synthesized for a growth time of 5 min. Reprinted with permission from Ref. [30]. Copyright 2014 by American Chemical Society.

Table 1.   Summary of recently reported approaches to prepare 2DSi nanomaterials. Note: EG = epitaxial growth, CE = chemical exfoliation.

ProductYearSynthetic methodSilicon sourceLateral size (µm)Thickness (nm)Ref.
Silicene2012EG on Ag(111)Si wafer> 0.03[29]
Silicene2013EG on Ir(111)Si wafer> 0.020.06[60]
Silicane2006CE of metal silicideCaSi1.85Mg0.150.2–0.50.37[66]
Silicane2018CE of metal silicideCaSi2~3.70.6[42]
MSN2014EG on Si substrateSiCl41–13[30]
MSN2014Arc dischargebulk Si0.022.4[57]
MSN2017EG on Ag(111)Si wafer> 0.057[47]
MSN2017CE of metal silicideLi13Si4~5.14[67]
MSN2018EG on NaCl substrateSiH4~5.250[58]
DownLoad: CSV
[1]
Heersche H B, Jarillo-Herrero P, Oostinga J B, et al. Bipolar supercurrent in graphene. Nature, 2007, 446(7131), 56 doi: 10.1038/nature05555
[2]
Du X, Skachko I, Barker A, et al. Approaching ballistic transport in suspended graphene. Nat Nanotechnol, 2008, 3(8), 491 doi: 10.1038/nnano.2008.199
[3]
Wang F, Zhang Y, Tian C, et al. Gate-variable optical transitions in graphene. Science, 2008, 320(5873), 206 doi: 10.1126/science.1152793
[4]
Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887), 385 doi: 10.1126/science.1157996
[5]
Scheuermann G M, Rumi L, Steurer P, et al. Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki−Miyaura Coupling reaction. J Am Chem Soc, 2009, 131(23), 8262 doi: 10.1021/ja901105a
[6]
Lu Y, Lu Y, Niu Z, et al. Graphene-based nanomaterials for sodium-ion batteries. Ad Energy Mater, 2018, 8(17), 1702469 doi: 10.1002/aenm.201702469
[7]
Lin L, Peng H, Liu Z. Synthesis challenges for graphene industry. Nat Mater, 2019, 18(6), 520 doi: 10.1038/s41563-019-0341-4
[8]
Deng X, Zheng X, Yuan T, et al. Ligand impact of silicanes as anode materials for lithium-ion batteries. Chem Mater, 2021, 33(23), 9357 doi: 10.1021/acs.chemmater.1c03254
[9]
Xu H, Chen H, Gao C. Advanced graphene materials for sodium/potassium/aluminum-ion batteries. ACS Mater Lett, 2021, 3(8), 1221 doi: 10.1021/acsmaterialslett.1c00280
[10]
Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol, 2012, 7(11), 699 doi: 10.1038/nnano.2012.193
[11]
Mak K F, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat Photonics, 2016, 10(4), 216 doi: 10.1038/nphoton.2015.282
[12]
Meng J L, Wang T Y, Chen L, et al. Energy-efficient flexible photoelectric device with 2D/0D hybrid structure for bio-inspired artificial heterosynapse application. Nano Energy, 2021, 83, 105815 doi: 10.1016/j.nanoen.2021.105815
[13]
Meng J L, Wang T Y, He Z Y, et al. Flexible boron nitride-based memristor for in situ digital and analogue neuromorphic computing applications. Mater Horiz, 2021, 8(2), 538 doi: 10.1039/D0MH01730B
[14]
Wang C, Xu X, Pi X, et al. Neuromorphic device based on silicon nanosheets. Nat Commun, 2022, 13(1), 5216 doi: 10.1038/s41467-022-32884-y
[15]
Meng J, Wang T, Zhu H, et al. Integrated in-sensor computing optoelectronic device for environment-adaptable artificial retina perception application. Nano Lett, 2022, 22(1), 81 doi: 10.1021/acs.nanolett.1c03240
[16]
Cahangirov S, Topsakal M, Aktürk E, et al. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys Rev Lett, 2009, 102(23), 236804 doi: 10.1103/PhysRevLett.102.236804
[17]
Guzmán-Verri G G, Lew Yan Voon L C. Electronic structure of silicon-based nanostructures. Phys Rev B, 2007, 76(7), 075131 doi: 10.1103/PhysRevB.76.075131
[18]
Morishita T, Russo S P, Snook I K, et al. First-principles study of structural and electronic properties of ultrathin silicon nanosheets. Phys Rev B, 2010, 82(4), 045419 doi: 10.1103/PhysRevB.82.045419
[19]
Liu C C, Feng W, Yao Y. Quantum spin Hall effect in silicene and two-dimensional germanium. Phys Rev Lett, 2011, 107(7), 076802 doi: 10.1103/PhysRevLett.107.076802
[20]
Spencer M J S, Morishita T, Snook I K. Reconstruction and electronic properties of silicon nanosheets as a function of thickness. Nanoscale, 2012, 4(9), 2906 doi: 10.1039/c2nr30100h
[21]
Chigo Anota E, Bautista Hernández A, Castro M, et al. Investigating the electronic properties of silicon nanosheets by first-principles calculations. J Molecul Model, 2012, 18(5), 2147 doi: 10.1007/s00894-011-1235-9
[22]
Kamal C, Chakrabarti A, Banerjee A, et al. Silicene beyond mono-layers—different stacking configurations and their properties. J Physics: Conden Matter, 2013, 25(8), 085508 doi: 10.1088/0953-8984/25/8/085508/meta
[23]
Gao J, Zhang J, Liu H, et al. Structures, mobilities, electronic and magnetic properties of point defects in silicene. Nanoscale, 2013, 5(20), 9785 doi: 10.1039/C3NR02826G
[24]
Li S, Wu Y, Liu W, et al. Control of band structure of van der Waals heterostructures: Silicene on ultrathin silicon nanosheets. Chem Phys Lett, 2014, 609, 161 doi: 10.1016/j.cplett.2014.06.047
[25]
Roman R E, Cranford S W. Mechanical properties of silicene. Comput Mater Sci, 2014, 82, 50 doi: 10.1016/j.commatsci.2013.09.030
[26]
Quhe R, Fei R, Liu Q, et al. Tunable and sizable band gap in silicene by surface adsorption. Sci Rep, 2012, 2(1), 853 doi: 10.1038/srep00853
[27]
Ryan B J, Hanrahan M P, Wang Y, et al. Silicene, siloxene, or silicane? Revealing the structure and optical properties of silicon nanosheets derived from calcium disilicide. Chem Mater, 2020, 32(2), 795 doi: 10.1021/acs.chemmater.9b04180
[28]
De Padova P, Kubo O, Olivieri B, et al. Multilayer silicene nanoribbons. Nano Lett, 2012, 12(11), 5500 doi: 10.1021/nl302598x
[29]
Feng B, Ding Z, Meng S, et al. Evidence of silicene in honeycomb structures of silicon on Ag(111). Nano Lett, 2012, 12(7), 3507 doi: 10.1021/nl301047g
[30]
Kim S W, Lee J, Sung J H, et al. Two-dimensionally grown single-crystal silicon nanosheets with tunable visible-light emissions. ACS Nano, 2014, 8(7), 6556 doi: 10.1021/nn501683f
[31]
Tao L, Cinquanta E, Chiappe D, et al. Silicene field-effect transistors operating at room temperature. Nat Nanotechnol, 2015, 10(3), 227 doi: 10.1038/nnano.2014.325
[32]
Lyuleeva A, Helbich T, Rieger B, et al. Polymer-silicon nanosheet composites: bridging the way to optoelectronic applications. J Phys D, 2017, 50(13), 135106 doi: 10.1088/1361-6463/aa5005
[33]
Berger C, Song Z, Li T, et al. Ultrathin epitaxial graphite:   2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B, 2004, 108(52), 19912 doi: 10.1021/jp040650f
[34]
Sutter P W, Flege J I, Sutter E A. Epitaxial graphene on ruthenium. Nat Mater, 2008, 7(5), 406 doi: 10.1038/nmat2166
[35]
Hao R, Qian W, Zhang L, et al. Aqueous dispersions of TCNQ-anion-stabilized graphene sheets. Chem Commun, 2008, 48, 6576 doi: 10.1039/B816971C
[36]
Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30), 10451 doi: 10.1073/pnas.0502848102
[37]
Wöhler F. Ueber verbindungen des siliciums mit sauerstoff und wasserstoff. Justus Liebigs Annalen der Chemie, 1863, 127(3), 257 doi: 10.1002/jlac.18631270302
[38]
Weiss A, Beil G, Meyer H. The topochemical reaction of CaSi2 to a two-dimensional subsiliceous acid Si6H3(OH)3 (= Kautsky' Siloxene). J Zeitschrift für Naturforschung B, 1980, 35, 25 doi: doi.org/10.1515/znb-1980-0108
[39]
Dahn J R, Way B M, Fuller E, et al. Structure of siloxene and layered polysilane (Si6H6). Phys Rev B, 1993, 48(24), 17872 doi: 10.1103/PhysRevB.48.17872
[40]
Min H, Hill J E, Sinitsyn N A, et al. Intrinsic and Rashba spin-orbit interactions in graphene sheets. Phys Rev B, 2006, 74(16), 165310 doi: 10.1103/PhysRevB.74.165310
[41]
Ezawa M. A topological insulator and helical zero mode in silicene under an inhomogeneous electric field. New J Phys, 2012, 14(3), 033003 doi: 10.1088/1367-2630/14/3/033003
[42]
Liu J, Yang Y, Lyu P, et al. Few-layer silicene nanosheets with superior lithium-storage properties. Adv Mater, 2018, 30(26), 1800838 doi: 10.1002/adma.201800838
[43]
Linti G. Silicon chemistry. From the Atom to Extended Systems. Edited by Peter Jutzi and Ulrich Schubert. Angew Chem Int Ed, 2004, 43(23), 135 doi: 10.1002/anie.200385120
[44]
Okamoto H, Kumai Y, Sugiyama Y, et al. Silicon nanosheets and their self-assembled regular stacking structure. J Am Chem Soc, 2010, 132(8), 2710 doi: 10.1021/ja908827z
[45]
Li F, Lu R, Yao Q, et al. Geometric and electronic structures as well as thermodynamic stability of hexyl-modified silicon nanosheet. J Phys Chem C, 2013, 117(25), 13283 doi: 10.1021/jp402875t
[46]
De Padova P, Generosi A, Paci B, et al. Multilayer silicene: clear evidence. 2D Mater, 2016, 3(3), 031011 doi: 10.1088/2053-1583/3/3/031011
[47]
Grazianetti C, Cinquanta E, Tao L, et al. Silicon nanosheets: Crossover between multilayer silicene and diamond-like growth regime. ACS Nano, 2017, 11(3), 3376 doi: 10.1021/acsnano.7b00762
[48]
Chen H D, Chien K H, Lin C Y, et al. Few-layer silicon films on the Ag(111) surface. J Phys Chem C, 2016, 120(5), 2698 doi: 10.1021/acs.jpcc.5b10208
[49]
Padova P D, Generosi A, Paci B, et al. Corrigendum: Multilayer silicene: clear evidence. 2D Mater, 2016, 3(4), 049501 doi: 10.1088/2053-1583/3/4/049501
[50]
Okamoto H, Sugiyama Y, Nakano H. Synthesis and modification of silicon nanosheets and other silicon nanomaterials. Chem Eur J, 2011, 17(36), 9864 doi: 10.1002/chem.201100641
[51]
Chen J, Du Y, Li Z, et al. Delocalized surface state in epitaxial Si(111) film with spontaneous ${\sqrt{3}}$  ×  ${\sqrt{3}}$ superstructure. Sci Rep, 2015, 5(1), 13590 doi: 10.1038/srep13590
[52]
Chen L, Liu C C, Feng B, et al. Evidence for Dirac fermions in a honeycomb lattice based on silicon. Phys Rev Lett, 2012, 109(5), 056804 doi: 10.1103/PhysRevLett.109.056804
[53]
De Padova P, Vogt P, Resta A, et al. Evidence of Dirac fermions in multilayer silicene. Appl Phys Lett, 2013, 102(16), 163106 doi: 10.1063/1.4802782
[54]
Hwang G C, Blom D A, Vogt T, et al. Pressure-driven phase transitions and reduction of dimensionality in 2D silicon nanosheets. Nat Commun, 2018, 9(1), 5412 doi: 10.1038/s41467-018-07832-4
[55]
Nakano H. Synthesis and modification of two-dimensional crystalline silicon nanosheets. J Ceram Soc Jpn, 2014, 122(1429), 748 doi: 10.2109/jcersj2.122.748
[56]
Nakano H, Ikuno T. Soft chemical synthesis of silicon nanosheets and their applications. Appl Phys Rev, 2016, 3(4), 040803 doi: 10.1063/1.4952442
[57]
Yu X, Xue F, Huang H, et al. Synthesis and electrochemical properties of silicon nanosheets by DC arc discharge for lithium-ion batteries. Nanoscale, 2014, 6(12), 6860 doi: 10.1039/C3NR06418B
[58]
Ryu J, Chen T, Bok T, et al. Mechanical mismatch-driven rippling in carbon-coated silicon sheets for stress-resilient battery anodes. Nat Commun, 2018, 9(1), 2924 doi: 10.1038/s41467-018-05398-9
[59]
Lalmi B, Oughaddou H, Enriquez H, et al. Epitaxial growth of a silicene sheet. Appl Phys Lett, 2010, 97(22), 223109 doi: 10.1063/1.3524215
[60]
Meng L, Wang Y, Zhang L, et al. Buckled silicene formation on Ir(111). Nano Lett, 2013, 13(2), 685 doi: 10.1021/nl304347w
[61]
Fleurence A, Friedlein R, Ozaki T, et al. Experimental evidence for epitaxial silicene on diboride thin films. Phys Rev Lett, 2012, 108(24), 245501 doi: 10.1103/PhysRevLett.108.245501
[62]
Warner J H, Rümmeli M H, Bachmatiuk A, et al. Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation. ACS Nano, 2010, 4(3), 1299 doi: 10.1021/nn901648q
[63]
Xu J, Zhang L, Shi R, et al. Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. J Mater Chem A, 2013, 1(46), 14766 doi: 10.1039/c3ta13188b
[64]
Ding Y, Chen Y P, Zhang X, et al. Controlled intercalation and chemical exfoliation of layered metal –organic frameworks using a chemically labile intercalating agent. J Am Chem Soc, 2017, 139(27), 9136 doi: 10.1021/jacs.7b04829
[65]
Yamanaka S, Matsu-ura H, Ishikawa M. New deintercalation reaction of calcium from calcium disilicide. Synthesis of layered polysilane. Mater Res Bull, 1996, 31(3), 307 doi: 10.1016/0025-5408(95)00195-6
[66]
Nakano H, Mitsuoka T, Harada M, et al. Soft synthesis of single-crystal silicon monolayer sheets. Angew Chem Int Ed, 2006, 45(38), 6303 doi: 10.1002/anie.200600321
[67]
Lang J, Ding B, Zhang S, et al. Scalable synthesis of 2D Si nanosheets. Adv Mater, 2017, 29(31), 1701777 doi: 10.1002/adma.201701777
[68]
Qiu J, Fu H, Xu Y, et al. From silicene to half-silicane by hydrogenation. ACS Nano, 2015, 9(11), 11192 doi: 10.1021/acsnano.5b04722
[69]
Wang W, Olovsson W, Uhrberg R I G. Band structure of hydrogenated silicene on Ag(111): Evidence for half-silicane. Phys Rev B, 2016, 93(8), 081406 doi: 10.1103/PhysRevB.93.081406
[70]
Liao W S, Lee S C. Water-induced room-temperature oxidation of Si–H and –Si–Si– bonds in silicon oxide. J Appl Phys, 1996, 80(2), 1171 doi: 10.1063/1.362915
[71]
Pereira R N, Rowe D J, Anthony R J, et al. Oxidation of freestanding silicon nanocrystals probed with electron spin resonance of interfacial dangling bonds. Phys Rev B, 2011, 83(15), 155327 doi: 10.1103/PhysRevB.83.155327
[72]
Acun A, Poelsema B, Zandvliet H J W, et al. The instability of silicene on Ag(111). Appl Phys Lett, 2013, 103(26), 263119 doi: 10.1063/1.4860964
[73]
Cottrell T L. The strengths of chemical bonds. Butterworths Scientific, 1958
[74]
Song J H, Sailor M J. Dimethyl sulfoxide as a mild oxidizing agent for porous silicon and its effect on photoluminescence. Inorg Chem, 1998, 37(13), 3355 doi: 10.1021/ic971587u
[75]
Dasog M, Yang Z, Regli S, et al. Chemical insight into the origin of red and blue photoluminescence arising from freestanding silicon nanocrystals. ACS Nano, 2013, 7(3), 2676 doi: 10.1021/nn4000644
[76]
Ohshita J, Yamamoto K, Tanaka D, et al. Preparation and photocurrent generation of silicon nanosheets with aromatic substituents on the surface. J Phys Chem C, 2016, 120(20), 10991 doi: 10.1021/acs.jpcc.6b03014
[77]
Helbich T, Lyuleeva A, Ludwig T, et al. One-step synthesis of photoluminescent covalent polymeric nanocomposites from 2D silicon nanosheets. Adv Funct Mater, 2016, 26(37), 6711 doi: 10.1002/adfm.201602137
[78]
Linford M R, Chidsey C E D. Alkyl monolayers covalently bonded to silicon surfaces. J Am Chem Soc, 1993, 115(26), 12631 doi: 10.1021/ja00079a071
[79]
Terry J, Linford M R, Wigren C, et al. Determination of the bonding of alkyl monolayers to the Si(111) surface using chemical-shift, scanned-energy photoelectron diffraction. Appl Phys Lett, 1997, 71(8), 1056 doi: 10.1063/1.119726
[80]
Terry J, Linford M R, Wigren C, et al. Alkyl-terminated Si(111) surfaces: A high-resolution, core level photoelectron spectroscopy study. J Appl Phys, 1998, 85(1), 213 doi: 10.1063/1.369473
[81]
Effenberger F, Götz G, Bidlingmaier B, et al. Photoactivated preparation and patterning of self-assembled monolayers with 1-alkenes and aldehydes on silicon hydride surfaces. Angew Chem Int Ed, 1998, 37(18), 2462 doi: 10.1002/(SICI)1521-3773(19981002)37:18<2462::AID-ANIE2462>3.0.CO;2-R
[82]
Cicero R L, Linford M R, Chidsey C E D. Photoreactivity of unsaturated compounds with hydrogen-terminated silicon(111). Langmuir, 2000, 16(13), 5688 doi: 10.1021/la9911990
[83]
Stewart M P, Buriak J M. Exciton-mediated hydrosilylation on photoluminescent nanocrystalline silicon. J Am Chem Soc, 2001, 123(32), 7821 doi: 10.1021/ja011116d
[84]
Eves B J, Lopinski G P. Formation of organic monolayers on silicon via gas-phase photochemical reactions. Langmuir, 2006, 22(7), 3180 doi: 10.1021/la052960a
[85]
Wang X, Ruther R E, Streifer J A, et al. UV-induced grafting of alkenes to silicon surfaces: Photoemission versus excitons. J Am Chem Soc, 2010, 132(12), 4048 doi: 10.1021/ja910498z
[86]
Helbich T, Lyuleeva A, Höhlein I M D, et al. Radical-induced hydrosilylation reactions for the functionalization of two-dimensional hydride terminated silicon nanosheets. Chem Eur J, 2016, 22(18), 6194 doi: 10.1002/chem.201505134
[87]
Lyuleeva A, Holzmüller P, Helbich T, et al. Charge transfer doping in functionalized silicon nanosheets/P3HT hybrid material for applications in electrolyte-gated field-effect transistors. J Mater Chem C, 2018, 6(27), 7343 doi: 10.1039/C8TC01484A
[88]
Helbich T, Kloberg M J, Sinelnikov R, et al. Diaryliodonium salts as hydrosilylation initiators for the surface functionalization of silicon nanomaterials and their collaborative effect as ring opening polymerization initiators. Nanoscale, 2017, 9(23), 7739 doi: 10.1039/C7NR01559C
[89]
Kloberg M J, Helbich T, Rieger B. Silicon nanosheets as co-initiators for diaryliodonium induced radical and cationic polymerization. Nanotechnology, 2018, 30(7), 075602 doi: 10.1088/1361-6528/aaf3f2/meta
[90]
Sudo T, Asao N, Gevorgyan V, et al. Lewis acid catalyzed highly regio- and stereocontrolled trans-hydrosilylation of alkynes and allenes. J Org Chem, 1999, 64(7), 2494 doi: 10.1021/jo9824293
[91]
Buriak J M, Allen M J. Lewis acid mediated functionalization of porous silicon with substituted alkenes and alkynes. J Am Chem Soc, 1998, 120(6), 1339 doi: 10.1021/ja9740125
[92]
Purkait T K, Iqbal M, Wahl M H, et al. Borane-catalyzed room-temperature hydrosilylation of alkenes/alkynes on silicon nanocrystal surfaces. J Am Chem Soc, 2014, 136(52), 17914 doi: 10.1021/ja510120e
[93]
Helbich T, Lyuleeva A, Marx P, et al. Lewis acid induced functionalization of photoluminescent 2D silicon nanosheets for the fabrication of functional hybrid films. Adv Funct Mater, 2017, 27(21), 1606764 doi: 10.1002/adfm.201606764
[94]
Sugiyama Y, Okamoto H, Mitsuoka T, et al. Synthesis and optical properties of monolayer organosilicon nanosheets. J Am Chem Soc, 2010, 132(17), 5946 doi: 10.1021/ja100919d
[95]
Ohashi M, Shirai S, Nakano H. Direct chemical synthesis of benzyl-modified silicane from calcium disilicide. Chem Mater, 2019, 31(13), 4720 doi: 10.1021/acs.chemmater.9b00715
[96]
Kumai Y, Kadoura H, Sudo E, et al. Si–C composite anode of layered polysilane (Si6H6) and sucrose for lithium ion rechargeable batteries. J Mater Chem, 2011, 21(32), 11941 doi: 10.1039/c1jm10532a
[97]
Sun L, Wang B, Wang Y. A novel silicon carbide nanosheet for high-performance humidity sensor. Adv Mater Interfaces, 2018, 5(6), 1701300 doi: 10.1002/admi.201701300
[98]
Lyuleeva A, Helbich T, Bobinger M, et al. Functionalized and oxidized silicon nanosheets: Customized design for enhanced sensitivity towards relative humidity. Sens Actuators B, 2019, 283, 451 doi: 10.1016/j.snb.2018.11.049
[99]
Ryu J, Jang Y J, Choi S, et al. All-in-one synthesis of mesoporous silicon nanosheets from natural clay and their applicability to hydrogen evolution. NPG Asia Mater, 2016, 8(3), e248 doi: 10.1038/am.2016.35
[100]
Wang S, Wang C, Pan W, et al. Two-dimensional silicon for (photo)catalysis. Sol RRL, 2020, 2000392 doi: 10.1002/solr.202000392
[101]
Liu F, Liu C C, Wu K, et al. d+id′ chiral superconductivity in bilayer silicene. Phys Rev Lett, 2013, 111(6), 066804 doi: 10.1103/PhysRevLett.111.066804
[102]
Ezawa M. Valley-polarized metals and quantum anomalous Hall effect in silicene. Phys Rev Lett, 2012, 109(5), 055502 doi: 10.1103/PhysRevLett.109.055502
[103]
Li X, Mullen J T, Jin Z, et al. Intrinsic electrical transport properties of monolayer silicene and MoS2 from first principles. Phys Rev B, 2013, 87(11), 115418 doi: 10.1103/PhysRevB.87.115418
[104]
Ding Y, Wang Y. Electronic structures of silicene fluoride and hydride. Appl Phys Lett, 2012, 100(8), 083102 doi: 10.1063/1.3688035
[105]
Wang R, Pi X, Ni Z, et al. Density functional theory study on organically surface-modified silicene. RSC Adv, 2015, 5(43), 33831 doi: 10.1039/C5RA05751E
[106]
Ni Z, Liu Q, Tang K, et al. Tunable bandgap in silicene and germanene. Nano Lett, 2012, 12(1), 113 doi: 10.1021/nl203065e
[107]
Nakano H, Tanaka Y, Yamamoto K, et al. Silicanes modified by conjugated substituents for optoelectronic devices. Adv Opt Mater, 2019, 7(18), 1900696 doi: 10.1002/adom.201900696
[108]
Dasog M, Kehrle J, Rieger B, et al. Silicon nanocrystals and silicon-polymer hybrids: Synthesis, surface engineering, and applications. Angew Chem Int Ed, 2016, 55(7), 2322 doi: 10.1002/anie.201506065
[109]
Karar D, Bandyopadhyay N R, Pramanick A K, et al. Quasi-two-dimensional luminescent silicon nanosheets. J Phys Chem C, 2018, 122(33), 18912 doi: 10.1021/acs.jpcc.8b03988
[110]
Ezawa M. Quasi-topological insulator and trigonal warping in gated bilayer silicene. J Phys Soc Jpn, 2012, 81(10), 104713 doi: 10.1143/JPSJ.81.104713
[111]
Huang B, Deng H X, Lee H, et al. Exceptional optoelectronic properties of hydrogenated bilayer silicene. Phys Rev X, 2014, 4(2), 021029 doi: 10.1103/PhysRevX.4.021029
[112]
Hussain T, Chakraborty S, Ahuja R. Metal-functionalized silicene for efficient hydrogen storage. ChemPhysChem, 2013, 14(15), 3463 doi: 10.1002/cphc.201300548
[113]
Pi X, Ni Z, Liu Y, et al. Density functional theory study on boron- and phosphorus-doped hydrogen-passivated silicene. Phys Chem Chem Phys, 2015, 17(6), 4146 doi: 10.1039/C4CP05196C
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1311 Times PDF downloads: 130 Times Cited by: 0 Times

    History

    Received: 23 September 2022 Revised: 07 November 2022 Online: Accepted Manuscript: 17 November 2022Uncorrected proof: 18 November 2022Published: 10 April 2023

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xuebiao Deng, Huai Chen, Zhenyu Yang. Two-dimensional silicon nanomaterials for optoelectronics[J]. Journal of Semiconductors, 2023, 44(4): 041101. doi: 10.1088/1674-4926/44/4/041101 ****Xuebiao Deng, Huai Chen, Zhenyu Yang. 2023: Two-dimensional silicon nanomaterials for optoelectronics. Journal of Semiconductors, 44(4): 041101. doi: 10.1088/1674-4926/44/4/041101
      Citation:
      Xuebiao Deng, Huai Chen, Zhenyu Yang. Two-dimensional silicon nanomaterials for optoelectronics[J]. Journal of Semiconductors, 2023, 44(4): 041101. doi: 10.1088/1674-4926/44/4/041101 ****
      Xuebiao Deng, Huai Chen, Zhenyu Yang. 2023: Two-dimensional silicon nanomaterials for optoelectronics. Journal of Semiconductors, 44(4): 041101. doi: 10.1088/1674-4926/44/4/041101

      Two-dimensional silicon nanomaterials for optoelectronics

      doi: 10.1088/1674-4926/44/4/041101
      More Information
      • Xuebiao Deng:received his bachelor’s degree from the School of Chemistry at Sun Yat-sen University in 2019. He is currently a Ph.D. candidate supervised by Professor Zhenyu Yang at Sun Yat-sen University. His research has focused on the synthesis and applications of two-dimensional silicon and germanium nanostructures
      • Huai Chen:earned his Ph.D. in Chemistry from Sun Yat-sen University in 2022. He has been working on his postdoctoral research at the School of Chemistry, Sun Yat-sen University. His current research interest includes silicon-based nanomaterials for biomedical and optoelectronic applications
      • Zhenyu Yang:received his B.Sc. degree in Chemistry from Nankai University in 2009 and his Ph.D. degree in Chemistry from the University of Alberta in 2014. From 2014 to 2018, he was a postdoctoral researcher at the University of Toronto. In 2018, he joined the School of Chemistry at Sun Yat-sen University as a Professor. His research focuses on the development of solution-processible optoelectronic materials and devices
      • Corresponding author: yangzhy63@mail.sysu.edu.cn
      • Received Date: 2022-09-23
      • Revised Date: 2022-11-07
      • Available Online: 2022-11-17

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return