Citation: |
Mengchi Liu, Yiwen Cheng, Yuee Xie, Yingcong Wei, Jinhui Xing, Yuanping Chen, Jing Xu. One-photo excitation pathway in 2D in-plane heterostructures for effective visible-light-driven photocatalytic degradation[J]. Journal of Semiconductors, 2023, 44(5): 052701. doi: 10.1088/1674-4926/44/5/052701
****
M C Liu, Y W Cheng, Y E Xie, Y C Wei, J H Xing, Y P Chen, J Xu. One-photo excitation pathway in 2D in-plane heterostructures for effective visible-light-driven photocatalytic degradation[J]. J. Semicond, 2023, 44(5): 052701. doi: 10.1088/1674-4926/44/5/052701
|
One-photo excitation pathway in 2D in-plane heterostructures for effective visible-light-driven photocatalytic degradation
DOI: 10.1088/1674-4926/44/5/052701
More Information
-
Abstract
Broad-spectrum absorption and highly effective charge-carrier separation are two essential requirements to improve the photocatalytic performance of semiconductor-based photocatalysts. In this work, a fascinating one-photon system is reported by rationally fabricating 2D in-plane Bi2O3/BiOCl (i-Cl) heterostructures for efficient photocatalytic degradation of RhB and TC. Systematic investigations revealed that the matched band structure generated an internal electric field and a chemical bond connection between the Bi2O3 and BiOCl in the Bi2O3/BiOCl composite that could effectively improve the utilization ratio of visible light and the separation effectivity of photo-generated carriers in space. The formed interactions at the 2D in-plane heterojunction interface induced the one-photon excitation pathway which has been confirmed by the experiment and DFT calculations. As a result, the i-Cl samples showed significantly enhanced photocatalytic efficiency towards the degradation of RhB and TC (RhB: 0.106 min−1; TC: 0.048 min−1) under visible light. The degradation activities of RhB and TC for i-Cl were 265.08 and 4.08 times that of pure BiOCl, as well as 9.27 and 2.14 times that of mechanistically mixed Bi2O3/BiOCl samples, respectively. This work provides a logical strategy to construct other 2D in-plane heterojunctions with a one-photon excitation pathway with enhanced performance. -
References
[1] Zampieri M. The genetic underground of antibiotic resistance. Science, 2021, 371, 783 doi: 10.1126/science.abf7922[2] Gong P, Xu H, Wang C F, et al. Persistent organic pollutant cycling in forests. Nat Rev Earth Env, 2021, 2, 182 doi: 10.1038/s43017-020-00137-5[3] Li Q, Pellegrino J, Lee D J, et al. Synthetic group A streptogramin antibiotics that overcome Vat resistance. Nature, 2020, 586, 145 doi: 10.1038/s41586-020-2761-3[4] Larsson D G J, Flach C F. Antibiotic resistance in the environment. Nat Rev Microbiol, 2022, 20, 257 doi: 10.1038/s41579-021-00649-x[5] Deepracha S, Ayral A, Ogawa M. Acceleration of the photocatalytic degradation of organics by in-situ removal of the products of degradation. Appl Catal B, 2021, 284, 119705 doi: 10.1016/j.apcatb.2020.119705[6] Praxedes F R, Nobre M A L, Poon P S, et al. Nanostructured KxNa1–xNbO3 hollow spheres as potential materials for the photocatalytic treatment of polluted water. Appl Catal B, 2021, 298, 120502 doi: 10.1016/j.apcatb.2021.120502[7] Keshavarzi N, Antonietti S CM. A new conducting polymer with exceptional visible-light photocatalytic activity derived from barbituric acid polycondensation. Adv Mater, 2020, 32, e1907702 doi: 10.1002/adma.201907702[8] Lin H, Wang J H, Zhao J W, et al. Molecular dipole-induced photoredox catalysis for hydrogen evolution over self-assembled naphthalimide nanoribbons. Angew Chem Int Edit, 2022, 134, e202117645 doi: 10.1002/ange.202117645[9] Wang Y T, Zhu C Z, Zuo G C, et al. 0D/2D Co3O4/TiO2 Z-Scheme heterojunction for boosted photocatalytic degradation and mechanism investigation. Appl Catal B, 2020, 278, 119298 doi: 10.1016/j.apcatb.2020.119298[10] Zhang Q C, Jiang L, Wang J, et al. Photocatalytic degradation of tetracycline antibiotics using three-dimensional network structure perylene diimide supramolecular organic photocatalyst under visible-light irradiation. Appl Catal B, 2020, 277, 119122 doi: 10.1016/j.apcatb.2020.119122[11] Ma M, Wang Z J, Lei Y, et al. An in-depth understanding of photophysics in organic photocatalysts. J Semicond, 2023, 44, 030401 doi: 10.1088/1674-4926/44/3/030401[12] Su H W, Yu X H, Wang W K, et al. A 2D bimetallic Ni-Co hydroxide monolayer cocatalyst for boosting photocatalytic H2 evolution. Chem Commun, 2022, 58, 6180 doi: 10.1039/D2CC01557A[13] Zhao C, Wang Z J, Shu D J, et al. A close step towards industrialized application of solar water splitting. J Semicond, 2020, 41(9), 090401 doi: 10.1088/1674-4926/41/9/090401[14] Wang Y, Wang H, Li J, et al. Facile synthesis of metal-free perylene imide-carbon nitride membranes for efficient photocatalytic degradation of organic pollutants in the presence of peroxymonosulfate. Appl Catal B, 2020, 278, 118981 doi: 10.1016/j.apcatb.2020.118981[15] Shi L, Yin J N, Liu Y R, et al. Embedding Cu3P quantum dots onto BiOCl nanosheets as a 0D/2D S-scheme heterojunction for photocatalytic antibiotic degradation. Chemosphere, 2022, 309, 136607 doi: 10.1016/j.chemosphere.2022.136607[16] Vinoth S, Ong W J, Pandikumar A. Defect engineering of BiOX (X = Cl, Br, I) based photocatalysts for energy and environmental applications: Current progress and future perspectives. Coordin Chem Rev, 2022, 464, 214541 doi: 10.1016/j.ccr.2022.214541[17] Wu Y Y, Hu Y X, Han M Q, et al. Mechanism insights into the facet-dependent photocatalytic degradation of perfluorooctanoic acid on BiOCl nanosheets. Chem Eng J, 2021, 425, 130672 doi: 10.1016/j.cej.2021.130672[18] Zhou P F, Shen Y B, Zhao S K, et al. Synthesis of clinoptilolite-supported BiOCl/TiO2 heterojunction nanocomposites with highly-enhanced photocatalytic activity for the complete degradation of xanthates under visible light. Chem Eng J, 2021, 407, 126697 doi: 10.1016/j.cej.2020.126697[19] Wang L L, Yang T, Peng L J, et al. Dual transfer channels of photo-carriers in 2D/2D/2D sandwich-like ZnIn2S4/g-C3N4/Ti3C2 MXene S-scheme/Schottky heterojunction for boosting photocatalytic H2 evolution. Chinese J Catal, 2022, 43, 2720 doi: 10.1016/S1872-2067(22)64133-0[20] Cao D W, Li M, Zhu J F, et al. Enhancement of photoelectrochemical performance in ferroelectric films via the introduction of an Au buffer layer. J Semicond, 2021, 42, 112701 doi: 10.1088/1674-4926/42/11/112701[21] Wang L L, Tang G G, Liu S, et al. Interfacial active-site-rich 0D Co3O4/1D TiO2 p-n heterojunction for enhanced photocatalytic hydrogen evolution. Chem Eng J, 2022, 428, 131338 doi: 10.1016/j.cej.2021.131338[22] Shen T, Shi X K, Guo J X, et al. Photocatalytic removal of NO by light-driven Mn3O4/BiOCl heterojunction photocatalyst: Optimization and mechanism. Chem Eng J, 2021, 408, 128014 doi: 10.1016/j.cej.2020.128014[23] Mao L B, Liu H, Yao L L, et al. Construction of a dual-functional CuO/BiOCl heterojunction for high-efficiently photoelectrochemical biosensing and photoelectrocatalytic degradation of aflatoxin B1. Chem Eng J, 2022, 429, 132297 doi: 10.1016/j.cej.2021.132297[24] Mei J, Tao Y, Gao C, et al. Photo-induced dye-sensitized BiPO4/BiOCl system for stably treating persistent organic pollutants. Appl Catal B, 2021, 285, 119841 doi: 10.1016/j.apcatb.2020.119841[25] Deng P K, Xu Y Y, Xu J, et al. Rationally Designed ZnCd-MOF/Ag3PO4 heterojunction for boosted photocatalytic oxygen evolution and in-situ grown of Ag nanoparticles. Res Chem Intermediat, 2022, 48, 2821 doi: 10.1007/s11164-022-04749-y[26] Xu Y Y, Xu J, Yan W, et al. Synergistic effect of a noble metal free MoS2 co-catalyst and a ternary Bi2S3/MoS2/P25 heterojunction for enhanced photocatalytic H2 production. Ceram Int, 2021, 47, 8895 doi: 10.1016/j.ceramint.2020.12.010[27] Zhang H, Tang G G, Wan X, et al. High-efficiency all-solid-state Z-scheme Ag3PO4/g-C3N4/MoSe2 photocatalyst with boosted visible-light photocatalytic performance for antibiotic elimination. Appl Surf Sci, 2020, 530, 147234 doi: 10.1016/j.apsusc.2020.147234[28] Lin Y, Su W Y, Wang X X, et al. LaOCl-Coupled polymeric carbon nitride for overall water splitting through a one-photon excitation pathway. Angew Chem Int Edit, 2020, 59, 20919 doi: 10.1002/anie.202008397[29] Li B, Peng W, Zhang J, et al. High-throughput one-photon excitation pathway in 0D/3D heterojunctions for visible-light driven hydrogen evolution. Adv Funct Mater, 2021, 31, 2100816 doi: 10.1002/adfm.202100816[30] Wang L, Zhao X, Lv D D, et al. Promoted photocharge separation in 2D lateral epitaxial heterostructure for visible-light-driven CO2 photoreduction. Adv Mater, 2020, 32, e2004311 doi: 10.1002/adma.202004311[31] Fang R Q, Dhakshinamoorthy A, Li Y, et al. Metal organic frameworks for biomass conversion. Chem Soc Rev, 2020, 49, 3638-3687 doi: 10.1039/D0CS00070A[32] Han D L, Liu X M, Wu S L, et al. Metal organic framework-based antibacterial agents and their underlying mechanisms. Chem Soc Rev, 2022, 51, 7138 doi: 10.1039/D2CS00460G[33] Xu J, He S, Zhang H L, et al. Layered metal–organic framework/graphene nanoarchitectures for organic photosynthesis under visible light. J Mater Chem A, 2015, 3, 24261 doi: 10.1039/C5TA06838J[34] Sharma S, Sahu B K, Cao L, et al. Porous nanomaterials: Main vein of agricultural nanotechnology. Prog Mater Sci, 2021, 121, 100812 doi: 10.1016/j.pmatsci.2021.100812[35] Zhu S R, Wu M K, Zhao W N, et al. In situ growth of MOF on BiOBr 2D material with excellent photocatalytic activity for dye degradation. Cryst Growth Des, 2017, 17, 2309 doi: 10.1021/acs.cgd.6b01811[36] Yang L, Xin Y M, Yao C F, et al. In situ preparation of Bi2WO6/CAU-17 photocatalyst with excellent photocatalytic activity for dye degradation. J Mater Sci:Mater Electron, 2021, 32, 13382 doi: 10.1007/s10854-021-05917-3[37] Wang Q X, Li G. Bi(iii) MOFs: syntheses, structures and applications. Inorg Chem Front, 2021, 8, 572 doi: 10.1039/D0QI01055C[38] Li S J, Cai M J, Wang C C, et al. Rationally designed Ta3N5/BiOCl S-scheme heterojunction with oxygen vacancies for elimination of tetracycline antibiotic and Cr(VI): Performance, toxicity evaluation and mechanism insight. J Mater Sci Technol, 2022, 123, 177 doi: 10.1016/j.jmst.2022.02.012[39] Bai J W, Li Y, Wei P K, et al. Enhancement of photocatalytic activity of Bi2O3–BiOI composite nanosheets through vacancy engineering. Small, 2019, 15, 1900020 doi: 10.1002/smll.201900020[40] Lv X, Yan D Y S, Lam F L, et al. Solvothermal synthesis of copper-doped BiOBr microflowers with enhanced adsorption and visible-light driven photocatalytic degradation of norfloxacin. Chem Eng J, 2020, 401, 126012 doi: 10.1016/j.cej.2020.126012[41] Yu C C, Chang H, Sun A C, et al. Stabilization of the β-phase Bi2O3 (201) thin film by an ultrathin Bi (001) seeding layer. Vacuum, 2019, 169, 108918 doi: 10.1016/j.vacuum.2019.108918[42] Zhou Q, Huang W, Xu C, et al. Novel hierarchical carbon quantum dots-decorated BiOCl nanosheet/carbonized eggshell membrane composites for improved removal of organic contaminants from water via synergistic adsorption and photocatalysis. Chem Eng J, 2021, 420, 129582 doi: 10.1016/j.cej.2021.129582[43] Yang X Y, Zhang Y M, Wang Y L, et al. Hollow β-Bi2O3@CeO2 heterostructure microsphere with controllable crystal phase for efficient photocatalysis. Chem Eng J, 2020, 387, 124100 doi: 10.1016/j.cej.2020.124100[44] Xu K Q, Shen J, Zhang S Y, et al. Efficient interfacial charge transfer of BiOCl-In2O3 step-scheme heterojunction for boosted photocatalytic degradation of ciprofloxacin. J Mater Sci Technol, 2022, 121, 236 doi: 10.1016/j.jmst.2021.12.070[45] Liu M C, Ye P, Wang M, et al. 2D/2D Bi-MOF-derived BiOCl/MoS2 nanosheets S-scheme heterojunction for effective photocatalytic degradation. J Environ Chem Eng, 2022, 10, 108436 doi: 10.1016/j.jece.2022.108436[46] Ming J T, Liu A, Zhao J W, et al. Hot π-electron tunneling of metal–insulator–COF nanostructures for efficient hydrogen production. Angew Chem Int Edit, 2019, 58, 18290 doi: 10.1002/anie.201912344[47] Yan W, Xu Y Y, Hao S W, et al. Promoting charge separation in hollow-structured C/MoS2@ZnIn2S4/Co3O4 photocatalysts via double heterojunctions for enhanced photocatalytic hydrogen evolution. Inorg Chem, 2022, 61, 4725 doi: 10.1021/acs.inorgchem.2c00045[48] Huang T, Lin X, Liu Y, et al. Molecular engineering of fully conjugated sp2 carbon-linked polymers for high-efficiency photocatalytic hydrogen evolution. Chemsuschem, 2020, 13, 672 doi: 10.1002/cssc.201903334[49] Li S J, Wang C C, Liu Y P, et al. Photocatalytic degradation of antibiotics using a novel Ag/Ag2S/Bi2MoO6 plasmonic p-n heterojunction photocatalyst: Mineralization activity, degradation pathways and boosted charge separation mechanism. Chem Eng J, 2021, 415, 128991 doi: 10.1016/j.cej.2021.128991[50] Lee J H, Lee Y, Bathula C, et al. A zero-dimensional/two-dimensional Ag-Ag2S-CdS plasmonic nanohybrid for rapid photodegradation of organic pollutant by solar light. Chemosphere, 2022, 296, 133973 doi: 10.1016/j.chemosphere.2022.133973[51] Park S H, Kim T, Kadam A N, et al. Synergistic photocatalysis of Z-scheme type Fe2O3/g-C3N4 heterojunction coupled with reduced graphene oxide. Sur Inter, 2022, 30, 101910 doi: 10.1016/j.surfin.2022.101910[52] Yao L, He X M, Lv J, et al. Efficient degradation of ciprofloxacin by Co3O4/Si nanoarrays heterojunction activated peroxymonosulfate under simulated sunlight: Performance and mechanism. J Environ Chem Eng, 2022, 10, 107397 doi: 10.1016/j.jece.2022.107397[53] Tang G G, Chen W T, Wan X, et al. Construction of magnetic Fe3O4 nanoparticles coupled with flower-like MoSe2 nanosheets for efficient adsorptive removal of methylene blue. Colloid Surface A, 2019, 587, 124291 doi: 10.1016/j.colsurfa.2019.124291 -
Supplements
23010013Supporting_Information.pdf
-
Proportional views