Citation: |
Madani Labed, Ji Young Min, Amina Ben Slim, Nouredine Sengouga, Chowdam Venkata Prasad, Sinsu Kyoung, You Seung Rim. Tunneling via surface dislocation in W/β-Ga2O3 Schottky barrier diodes[J]. Journal of Semiconductors, 2023, 44(7): 072801. doi: 10.1088/1674-4926/44/7/072801
****
Madani Labed, Ji Young Min, Amina Ben Slim, Nouredine Sengouga, Chowdam Venkata Prasad, Sinsu Kyoung, You Seung Rim, Tunneling via surface dislocation in W/β-Ga2O3 Schottky barrier diodes[J]. Journal of Semiconductors, 2023, 44(7), 072801 doi: 10.1088/1674-4926/44/7/072801
|
Tunneling via surface dislocation in W/β-Ga2O3 Schottky barrier diodes
DOI: 10.1088/1674-4926/44/7/072801
More Information
-
Abstract
In this work, W/β-Ga2O3 Schottky barrier diodes, prepared using a confined magnetic field-based sputtering method, were analyzed at different operation temperatures. Firstly, Schottky barrier height increased with increasing temperature from 100 to 300 K and reached 1.03 eV at room temperature. The ideality factor decreased with increasing temperature and it was higher than 2 at 100 K. This apparent high value was related to the tunneling effect. Secondly, the series and on-resistances decreased with increasing operation temperature. Finally, the interfacial dislocation was extracted from the tunneling current. A high dislocation density was found, which indicates the domination of tunneling through dislocation in the transport mechanism. These findings are evidently helpful in designing better performance devices.-
Keywords:
- β-Ga2O3,
- SBD,
- SBD paramatters,
- tungsten,
- low temperature,
- tunneling via dislocation
-
References
[1] Labed M, Sengouga N, Labed M, et al. Modeling a Ni/β-Ga2O3 Schottky barrier diode deposited by confined magnetic-field-based sputtering. J Phys D, 2021, 54, 115102 doi: 10.1088/1361-6463/abce2c[2] Galazka Z. β-Ga2O3 for wide-bandgap electronics and optoelectronics. Semicond Sci Technol, 2018, 33, 113001 doi: 10.1088/1361-6641/aadf78[3] Galazka Z. Growth of bulk β-Ga2O3 single crystals by the Czochralski method. J Appl Phys, 2022, 131, 31103 doi: 10.1063/5.0076962[4] Pratiyush A S, Muazzam U U, Kumar S, et al. Optical float-zone grown bulk β-Ga2O3-based linear MSM array of UV-C photodetectors. IEEE Photon Technol Lett, 2019, 31, 923 doi: 10.1109/LPT.2019.2913286[5] Hoshikawa K, Ohba E, Kobayashi T, et al. Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air. J Cryst Growth, 2016, 447, 36 doi: 10.1016/j.jcrysgro.2016.04.022[6] Bosi M, Seravalli L, Mazzolini P, et al. Thermodynamic and kinetic effects on the nucleation and growth of ε/κ- or β-Ga2O3 by metal–organic vapor phase epitaxy. Cryst Growth Des, 2021, 21, 6393 doi: 10.1021/acs.cgd.1c00863[7] Kyrtsos A, Matsubara M, Bellotti E. On the feasibility of p-type Ga2O3. Appl Phys Lett, 2018, 112, 032108 doi: 10.1063/1.5009423[8] Farzana E, Zhang Z, Paul P K, et al. Influence of metal choice on (010) β-Ga2O3 Schottky diode properties. Appl Phys Lett, 2017, 110, 202102 doi: 10.1063/1.4983610[9] Kim H, Kyoung S, Kang T, et al. Effective surface diffusion of nickel on single crystal β-Ga2O3 for Schottky barrier modulation and high thermal stability. J Mater Chem C, 2019, 7, 10953 doi: 10.1039/C9TC02922B[10] Yao Y, Gangireddy R, Kim J, et al. Electrical behavior of β- Ga2O3 Schottky diodes with different Schottky metals. J Vac Sci Technol B, 2017, 35, 03D113 doi: 10.1116/1.4980042[11] Labed M, Park J H, Meftah A, et al. Low temperature modeling of Ni/β-Ga2O3 Schottky barrier diode interface. ACS Appl Electron Mater, 2021, 3, 3667 doi: 10.1021/acsaelm.1c00647[12] Ravinandan M, Koteswara Rao P, Rajagopal Reddy V. Analysis of the current–voltage characteristics of the Pd/Au Schottky structure on n-type GaN in a wide temperature range. Semicond Sci Technol, 2009, 24, 035004 doi: 10.1088/0268-1242/24/3/035004[13] Parihar U, Ray J, Panchal C J, et al. Influence of temperature on Al/p-CuInAlSe2 thin-film Schottky diodes. Appl Phys A, 2016, 122, 1 doi: 10.1007/s00339-016-0105-9[14] Arslan E, Altındal Ş, Özçelik S, et al. Tunneling current via dislocations in Schottky diodes on AlInN/AlN/GaN heterostructures. Semicond Sci Technol, 2009, 24, 075003 doi: 10.1088/0268-1242/24/7/075003[15] Filali W, Sengouga N, Oussalah S, et al. Characterisation of temperature dependent parameters of multi-quantum well (MQW) Ti/Au/n-AlGaAs/n-GaAs/n-AlGaAs Schottky diodes. Superlattices Microstruct, 2017, 111, 1010 doi: 10.1016/j.spmi.2017.07.059[16] Achard J, Tallaire A, Mille V, et al. Improvement of dislocation density in thick CVD single crystal diamond films by coupling H2/O2 plasma etching and chemo-mechanical or ICP treatment of HPHT substrates. Phys Status Solidi A, 2014, 211, 2264 doi: 10.1002/pssa.201431181[17] Yao Y Z, Ishikawa Y, Sugawara Y. Revelation of dislocations in β-Ga2O3 substrates grown by edge-defined film-fed growth. Phys Status Solidi A, 2020, 217, 1900630 doi: 10.1002/pssa.201900630[18] Kuramata A, Koshi K, Watanabe S, et al. High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth. Jpn J Appl Phys, 2016, 55, 1202A2 doi: 10.7567/JJAP.55.1202A2[19] Yang T H, Fu H Q, Chen H, et al. Temperature-dependent electrical properties of β-Ga2O3 Schottky barrier diodes on highly doped single-crystal substrates. J Semicond, 2019, 40, 012801 doi: 10.1088/1674-4926/40/1/012801[20] Xian M H, Fares C, Ren F, et al. Effect of thermal annealing for W/β-Ga2O3 Schottky diodes up to 600 °C. J Vac Sci Technol B, 2019, 37, 061201 doi: 10.1116/1.5125006[21] Fares C, Ren F, Pearton S J. Temperature-dependent electrical characteristics of β-Ga2O3 diodes with W Schottky contacts up to 500°C. ECS J Solid State Sci Technol, 2018, 8, Q3007 doi: 10.1149/2.0011907jss[22] Norde H. A modified forward I‐V plot for Schottky diodes with high series resistance. J Appl Phys, 1979, 50, 5052 doi: 10.1063/1.325607[23] Dhimmar J M, Desai H N, Modi B P. The effect of interface states density distribution and series resistance on electrical behaviour of Schottky diode. Mater Today Proc, 2016, 3, 1658 doi: 10.1016/j.matpr.2016.04.056[24] Sekhar Reddy P R, Janardhanam V, Shim K H, et al. Temperature-dependent Schottky barrier parameters of Ni/Au on n-type (001) β-Ga2O3 Schottky barrier diode. Vacuum, 2020, 171, 109012 doi: 10.1016/j.vacuum.2019.109012[25] Higashiwaki M, Sasaki K, Kuramata A, et al. Development of gallium oxide power devices. Phys Status Solidi A, 2014, 211, 21 doi: 10.1002/pssa.201330197[26] Schoeck G, Tiller W A. On dislocation formation by vacancy condensation. Philos Mag A J Theor Exp Appl Phys, 1960, 5, 43 doi: 10.1080/14786436008241199[27] Zade V, Mallesham B, Roy S, et al. Electronic structure of tungsten-doped β-Ga2O3 compounds. ECS J Solid State Sci Technol, 2019, 8, Q3111 doi: 10.1149/2.0121907jss[28] Lee M, Ahn C W, Vu T K O, et al. Current transport mechanism in palladium Schottky contact on Si-based freestanding GaN. Nanomaterials, 2020, 10, E297 doi: 10.3390/nano10020297[29] Belyaev A E, Boltovets N S, Ivanov V N, et al. Mechanism of dislocation-governed charge transport in Schottky diodes based on gallium nitride. Semiconductors, 2008, 42, 689 doi: 10.1134/S1063782608060092[30] Handwerg M, Mitdank R, Galazka Z, et al. Temperature-dependent thermal conductivity in Mg-doped and undoped β-Ga2O3 bulk-crystals. Semicond Sci Technol, 2015, 30, 024006 doi: 10.1088/0268-1242/30/2/024006[31] Ma T C, Chen X H, Kuang Y, et al. On the origin of dislocation generation and annihilation in α-Ga2O3 epilayers on sapphire. Appl Phys Lett, 2019, 115, 182101 doi: 10.1063/1.5120554 -
Proportional views