Citation: |
Yansheng Hu, Yuangang Wang, Wei Wang, Yuanjie Lv, Hongyu Guo, Zhirong Zhang, Hao Yu, Xubo Song, Xingye zhou, Tingting Han, Shaobo Dun, Hongyu Liu, Aimin Bu, Zhihong Feng. 11.2 W/mm power density AlGaN/GaN high electron-mobility transistors on a GaN substrate[J]. Journal of Semiconductors, 2024, 45(1): 012501. doi: 10.1088/1674-4926/45/1/012501
****
Y S Hu, Y G Wang, W Wang, Y J Lv, H Y Guo, Z R Zhang, H Yu, X B Song, X Y zhou, T T Han, S B Dun, H Y Liu, A M Bu, Z H Feng. 11.2 W/mm power density AlGaN/GaN high electron-mobility transistors on a GaN substrate[J]. J. Semicond, 2024, 45(1): 012501. doi: 10.1088/1674-4926/45/1/012501
|
11.2 W/mm power density AlGaN/GaN high electron-mobility transistors on a GaN substrate
DOI: 10.1088/1674-4926/45/1/012501
More Information
-
Abstract
In this letter, high power density AlGaN/GaN high electron-mobility transistors (HEMTs) on a freestanding GaN substrate are reported. An asymmetric Γ-shaped 500-nm gate with a field plate of 650 nm is introduced to improve microwave power performance. The breakdown voltage (BV) is increased to more than 200 V for the fabricated device with gate-to-source and gate-to-drain distances of 1.08 and 2.92 μm. A record continuous-wave power density of 11.2 W/mm@10 GHz is realized with a drain bias of 70 V. The maximum oscillation frequency (fmax) and unity current gain cut-off frequency (ft) of the AlGaN/GaN HEMTs exceed 30 and 20 GHz, respectively. The results demonstrate the potential of AlGaN/GaN HEMTs on free-standing GaN substrates for microwave power applications. -
References
[1] Wu Y F, Moore M, Saxler A, et al. 40-W/mm double field-plated GaN HEMTs. 2006 64th Device Research Conference, 2006, 151 doi: 10.1109/DRC.2006.305162[2] Tilak V, Green B, Kaper V, et al. Influence of barrier thickness on the high-power performance of AlGaN/GaN HEMTs. IEEE Electron Device Lett, 2001, 22, 504 doi: 10.1109/55.962644[3] Yue Y Z, Hu Z Y, Guo J, et al. Ultrascaled InAlN/GaN high electron mobility transistors with cutoff frequency of 400 GHz. Jpn J Appl Phys, 2013, 52, 08JN14 doi: 10.7567/JJAP.52.08JN14[4] Palacios T, Chakraborty A, Rajan S, et al. High-power AlGaN/GaN HEMTs for ka-band applications. IEEE Electron Device Lett, 2005, 26, 781 doi: 10.1109/LED.2005.857701[5] Koehler A D, Anderson T J, Hite J K, et al. Degradation mechanisms of AlGaN/GaN HEMTs on sapphire, Si, and SiC substrates under Proton. 2014 IEEE Workshop on Wide Bandgap Power Devices and Applications, 2014, 33 doi: 10.1109/WiPDA.2014.6964619[6] Hsu J W P, Manfra M J, Molnar R J, et al. Direct imaging of reverse-bias leakage through pure screw dislocations in GaN films grown by molecular beam epitaxy on GaN templates. Appl Phys Lett, 2002, 81, 79 doi: 10.1063/1.1490147[7] Hsu C Y, Lan W H, Wu Y S. Effect of thermal annealing of Ni/Au ohmic contact on the leakage current of GaN based light emitting diodes. Appl Phys Lett, 2003, 83, 2447 doi: 10.1063/1.1601306[8] Nakamura S. III-V nitride-based blue LDs with modulation-doped strained-layer superlattices. Compound Semiconductors 1997. Proceedings of the IEEE Twenty-Fourth International Symposium on Compound Semiconductors, 2002, 1 doi: 10.1109/ISCS.1998.711529[9] Anderson T J, Tadjer M J, Hite J K, et al. Effect of reduced extended defect density in MOCVD grown AlGaN/GaN HEMTs on native GaN substrates. IEEE Electron Device Lett, 2015, 37, 28 doi: 10.1109/LED.2015.2502221[10] Liu J P, Ryou J H, Yoo D, et al. III-nitride heterostructure field-effect transistors grown on semi-insulating GaN substrate without regrowth interface charge. Appl Phys Lett, 2008, 92, 133513 doi: 10.1063/1.2906372[11] Wu M, Leach J H, Ni X, et al. InAlN/GaN heterostructure field-effect transistors on Fe-doped semi-insulating GaN substrates. J Vac Sci Technol B Nanotechnol Microelectron Mater Process Meas Phenom, 2010, 28, 908 doi: 10.1116/1.3481138[12] Jana D, Chatterjee A, Sharma T K. Confirmation of the compensation of unintentional donors in AlGaN/GaN HEMT structures by Mg-doping during initial growth of GaN buffer layer. J Lumin, 2020, 219, 116904 doi: 10.1016/j.jlumin.2019.116904[13] Deen D A, Storm D F, Meyer D J, et al. Impact of barrier thickness on transistor performance in AlN/GaN high electron mobility transistors grown on free-standing GaN substrates. Appl Phys Lett, 2014, 105, 093503 doi: 10.1063/1.4895105[14] Kaun S W, Wong M H, Lu J, et al. Reduction of carbon proximity effects by including AlGaN back barriers in HEMTs on free-standing GaN. Electron Lett, 2013, 49, 893 doi: 10.1049/el.2013.1723[15] Tanabe S, Watanabe N, Matsuzaki H. Breakdown mechanism in AlGaN/GaN high-electron mobility transistor structure on free-standing n-type GaN substrate. Jpn J Appl Phys, 2016, 55, 05FK01 doi: 10.7567/JJAP.55.05FK01[16] Zhu M D, Song B, Hu Z Y, et al. Comparing buffer leakage in PolarMOSH on SiC and free-standing GaN substrates. 2016 Lester Eastman Conference (LEC), 2016, 27 doi: 10.1109/LEC.2016.7578926[17] Kumazaki Y, Ohki T, Kotani J, et al. Over 80% power-added-efficiency GaN high-electron-mobility transistors on free-standing GaN substrates. Appl Phys Express, 2021, 14, 016502 doi: 10.35848/1882-0786/abc1cc[18] Góralczyk M, Gryglewski D. S-band GaN PolHEMT power amplifier. 2016 21st International Conference on Microwave, Radar and Wireless Communications (MIKON), 2016, 1 doi: 10.1109/MIKON.2016.7492073[19] Storm D F, Katzer D S, Roussos J A, et al. AlGaN/GaN HEMTs on free-standing GaN substrates: MBE growth and microwave characterization. J Cryst Growth, 2007, 301/302, 429 doi: 10.1016/j.jcrysgro.2006.11.085[20] Chu K K, Chao P C, Pizzella M T, et al. 9.4-W/mm power density AlGaN–GaN HEMTs on free-standing GaN substrates. IEEE Electron Device Lett, 2004, 25, 596 doi: 10.1109/LED.2004.833847[21] Chu K K, Chao P C, Windyka J A. Stable high power GaN-on-GaN hemt. Int J Hi Spe Ele Syst, 2004, 14, 738 doi: 10.1142/S0129156404002764[22] Meyer D J, Deen D A, Storm D F, et al. High electron velocity submicrometer AlN/GaN MOS-HEMTs on freestanding GaN substrates. IEEE Electron Device Lett, 2013, 34, 199 doi: 10.1109/LED.2012.2228463[23] Wojtasiak W, Góralczyk M, Gryglewski D, et al. Micromachines, 2018, 9, 546[24] Asif Khan M, Yang J W, Knap W, et al. GaN–AlGaN heterostructure field-effect transistors over bulk GaN substrates. Appl Phys Lett, 2000, 76, 3807 doi: 10.1063/1.126788[25] Zhang Z R, Fang Y L, Yin J Y, et al. Highmobility AlGaN/GaN high electronic mobility transistors on GaN homo-substrates. Acta Phys Sin, 2018, 67, 076801 doi: 10.7498/aps.67.20172581[26] Ma T, Hao Y, Chen C, et al. A new small-signal model for asymmetrical AlGaN/GaN HEMTs. J Semicond, 2010, 31, 064002 doi: 10.1088/1674-4926/31/6/064002[27] Kumar V, Chen G, Guo S P, et al. Field-plated 0.25-μm gate-length AlGaN/GaN HEMTs with varying field-plate length. IEEE Trans Electron Devices, 2006, 53, 1477 doi: 10.1109/TED.2006.874090[28] Buttari D, Chini A, Meneghesso G, et al. Systematic characterization of Cl2 reactive ion etching for improved ohmics in AlGaN/GaN HEMTs. IEEE Electron Device Lett, 2002, 23, 76 doi: 10.1109/55.981311[29] Wang C, Cho S J, Kim N Y. Optimization of ohmic contact metallization process for AlGaN/GaN high electron mobility transistor. Trans Electr Electron Mater, 2013, 14, 32 doi: 10.4313/TEEM.2013.14.1.32[30] Bahat-Treidel E, Hilt O, Brunner F, et al. AlGaN/GaN/AlGaN DH-HEMTs breakdown voltage enhancement using multiple grating field plates (MGFPs). IEEE Trans Electron Devices, 2010, 57, 1208 doi: 10.1109/TED.2010.2045705[31] Wang C, Maharjan R K, Cho S J, et al. A novel manufacturing process of AlGaN/GaN HEMT for X-band high-power application on Si (111) substrate. 2012 Asia Pacific Microwave Conference Proceedings. Kaohsiung, Taiwan, China, 2013, 484 doi: 10.1109/APMC.2012.6421638[32] Chen Y C, Sanyal I, Hu T Y, et al. The influence of superlattice structure on the dynamic buffer response of AlInN/GaN-on-Si HEMTs. IEEE Trans Nanotechnol, 2020, 19, 415 doi: 10.1109/TNANO.2020.2992312 -
Proportional views