Citation: |
Huiqiao Liu, Jiakun Zhang, Jinjin Fu, Chao Li, Yang Fan, Kangzhe Cao. Functional nanolayers favor the stability of solid-electrolyte-interphase in rechargeable batteries[J]. Journal of Semiconductors, 2024, 45(2): 020201. doi: 10.1088/1674-4926/45/2/020201
****
Huiqiao Liu, Jiakun Zhang, Jinjin Fu, Chao Li, Yang Fan, Kangzhe Cao. 2024: Functional nanolayers favor the stability of solid-electrolyte-interphase in rechargeable batteries. Journal of Semiconductors, 45(2): 020201. doi: 10.1088/1674-4926/45/2/020201
|
Functional nanolayers favor the stability of solid-electrolyte-interphase in rechargeable batteries
DOI: 10.1088/1674-4926/45/2/020201
More Information
-
References
[1] Liu Y Y, Shi H D, Wu Z S. Recent status, key strategies and challenging perspectives of fast-charging graphite anodes for lithium-ion batteries. Energy Environ Sci, 2023, 16, 4834 doi: 10.1039/D3EE02213G[2] Chao X, Yan C Z, Zhao H P, et al. Micro-nano structural electrode architecture for high power energy storage. J Semicond, 2023, 44, 050201 doi: 10.1088/1674-4926/44/5/050201[3] Wang H W, Zhai D Y, Kang F Y. Solid electrolyte interphase (SEI) in potassium ion batteries. Energy Environ Sci, 2020, 13, 4583 doi: 10.1039/D0EE01638A[4] Xu Y B, Jia H, Gao P Y, et al. Direct in situ measurements of electrical properties of solid–electrolyte interphase on lithium metal anodes. Nat Energy, 2023, 8, 1345 doi: 10.1038/s41560-023-01361-1[5] Hou M J, Zhou Y J, Liang F, et al. Research progress of solid electrolyte interphase for sodium metal anodes. Chem Eng J, 2023, 475, 146227 doi: 10.1016/j.cej.2023.146227[6] Single F, Latz A, Horstmann B. Identifying the mechanism of continued growth of the solid-electrolyte interphase. ChemSusChem, 2018, 11, 1950 doi: 10.1002/cssc.201800077[7] Feng G X, Jia H, Shi Y P, et al. Imaging solid-electrolyte interphase dynamics using operando reflection interference microscopy. Nat Nanotechnol, 2023, 18, 780 doi: 10.1038/s41565-023-01316-3[8] Lodico J J, Mecklenburg M, Chan H L, et al. Operando spectral imaging of the lithium ion battery’s solid-electrolyte interphase. Sci Adv, 2023, 9, eadg5135 doi: 10.1126/sciadv.adg5135[9] Qian G Y, Li Y W, Chen H B, et al. Revealing the aging process of solid electrolyte interphase on SiO x anode. Nat Commun, 2023, 14, 6048 doi: 10.1038/s41467-023-41867-6[10] Chen Y, Wu W K, Gonzalez-Munoz S, et al. Nanoarchitecture factors of solid electrolyte interphase formation via 3D nano-rheology microscopy and surface force-distance spectroscopy. Nat Commun, 2023, 14, 1321 doi: 10.1038/s41467-023-37033-7[11] Cao C C, Zhong Y J, Shao Z P. Electrolyte engineering for safer lithium-ion batteries: A review. Chin J Chem, 2023, 41, 1119 doi: 10.1002/cjoc.202200588[12] Zheng J, Hu C, Nie L J, et al. Recent advances in potassium-ion batteries: From material design to electrolyte engineering. Adv Mater Technol, 2023, 8, 2201591 doi: 10.1002/admt.202201591[13] Yang Y, Yang W H, Yang H J, et al. Electrolyte design principles for low-temperature lithium-ion batteries. eScience, 2023, 3, 100170 doi: 10.1016/j.esci.2023.100170[14] Liu H Q, He Y N, Cao K Z, et al. Activating commercial Al pellets by replacing the passivation layer for high-performance half/full Li-ion batteries. Chem Eng J, 2022, 433, 133572 doi: 10.1016/j.cej.2021.133572[15] Liu H Q, He Y N, Zhang H, et al. Lowering the voltage-hysteresis of CuS anode for Li-ion batteries via constructing heterostructure. Chem Eng J, 2021, 425, 130548 doi: 10.1016/j.cej.2021.130548[16] Ye M H, Zhao W G, Li J H, et al. Integration of localized electric-field redistribution and interfacial tin nanocoating of lithium microparticles toward long-life lithium metal batteries. ACS Appl Mater Interfaces, 2021, 13, 650 doi: 10.1021/acsami.0c18831[17] Zhou J H, Ma K N, Lian X Y, et al. Eliminating graphite exfoliation with an artificial solid electrolyte interphase for stable lithium-ion batteries. Small, 2022, 18, e2107460 doi: 10.1002/smll.202107460[18] Tu S B, Zhang B, Zhang Y, et al. Fast-charging capability of graphite-based lithium-ion batteries enabled by Li3P-based crystalline solid–electrolyte interphase. Nat Energy, 2023, 8, 1365 doi: 10.1038/s41560-023-01387-5[19] He Y, Jiang L, Chen T W, et al. Progressive growth of the solid-electrolyte interphase towards the Si anode interior causes capacity fading. Nat Nanotechnol, 2021, 16, 1113 doi: 10.1038/s41565-021-00947-8[20] Wang H, Miao M R, Li H, et al. In situ-formed artificial solid electrolyte interphase for boosting the cycle stability of Si-based anodes for Li-ion batteries. ACS Appl Mater Interfaces, 2021, 13, 22505 doi: 10.1021/acsami.1c03902[21] Pan S Y, Han J W, Wang Y Q, et al. Integrating SEI into layered conductive polymer coatings for ultrastable silicon anodes. Adv Mater, 2022, 34, e2203617 doi: 10.1002/adma.202203617[22] Yu Z A, Cui Y, Bao Z N. Design principles of artificial solid electrolyte interphases for lithium-metal anodes. Cell Rep Phys Sci, 2020, 1, 100119 doi: 10.1016/j.xcrp.2020.100119[23] Chen A L, Shang N, Ouyang Y, et al. Electroactive polymeric nanofibrous composite to drive in situ construction of lithiophilic SEI for stable lithium metal anodes. eScience, 2022, 2, 192 doi: 10.1016/j.esci.2022.02.003[24] Li C, Liang Z Y, Li Z Z, et al. Self-assembly monolayer inspired stable artificial solid electrolyte interphase design for next-generation lithium metal batteries. Nano Lett, 2023, 23, 4014 doi: 10.1021/acs.nanolett.3c00783[25] Ding H B, Wang J, Zhou J, et al. Building electrode skins for ultra-stable potassium metal batteries. Nat Commun, 2023, 14, 2305 doi: 10.1038/s41467-023-38065-9[26] Wang B, Yuan F, Li W, et al. Rational formation of solid electrolyte interface for high-rate potassium ion batteries. Nano Energy, 2020, 75, 104979 doi: 10.1016/j.nanoen.2020.104979[27] Zhou H, Cui C, Cheng R F, et al. MXene enables stable solid-electrolyte interphase for Si@MXene composite with enhanced cycling stability. ChemElectroChem, 2021, 8, 3089 doi: 10.1002/celc.202100878[28] Hou L, Cui R W, Xiong S S, et al. A multilayered sturdy shell protects silicon nanoparticle Si@void C@TiO2 as an advanced lithium ion battery anode. Phys Chem Chem Phys, 2021, 23, 3934 doi: 10.1039/D0CP05434H[29] Liu H Q, He Y N, Cao K Z, et al. Stimulating the reversibility of Sb2S3 anode for high-performance potassium-ion batteries. Small, 2021, 17, 2008133 doi: 10.1002/smll.202008133[30] Chen C, Hu Q L, Xue H Y, et al. Ultrafast and ultrastable FeSe2 embedded in nitrogen-doped carbon nanofibers anode for sodium-ion half/full batteries. Nanotechnology, 2024, 35, 055404 doi: 10.1088/1361-6528/ad06d7[31] Wei Z N, Wang L N, Chen P L, et al. Constructing layered vanadium disulfide nanosheets via wet-chemistry: A superior anode material for sodium ion batteries. J Xinyang Norm Univ Nat Sci Ed, 2020, 33, 612 doi: 10.3969/j.issn.1003-0972.2020.04.016[32] Xu J, Dong Z, Li Y J, et al. Freestanding wide layer spacing MoS2@WS2@CC ternary structure with fast diffusion path for a highly activity zinc-ion batteries. Appl Surf Sci, 2023, 613, 156146 doi: 10.1016/j.apsusc.2022.156146[33] Yang G W, Yan C Z, Hu P, et al. Synthesis of CoSe2 reinforced nitrogen-doped carbon composites as advanced anodes for potassium-ion batteries. Inorg Chem Front, 2022, 9, 3719 doi: 10.1039/D2QI00848C[34] Cao K Z, Zheng R T, Wang S D, et al. Boosting coulombic efficiency of conversion-reaction anodes for potassium-ion batteries via confinement effect. Adv Funct Mater, 2020, 30, 2007712 doi: 10.1002/adfm.202007712[35] Han B, Chen S Q, Guo C F, et al. Atomic layer deposition of alumina onto yolk-shell FeS/MoS2 as universal anodes for Li/Na/K-Ion batteries. Electrochim Acta, 2022, 402, 139471 doi: 10.1016/j.electacta.2021.139471 -
Proportional views