Citation: |
Chengcheng Xie, Bin Zhang, Menglan Lv, Liming Ding. Engineering fibrillar morphology for highly efficient organic solar cells[J]. Journal of Semiconductors, 2024, 45(2): 020202. doi: 10.1088/1674-4926/45/2/020202
****
Chengcheng Xie, Bin Zhang, Menglan Lv, Liming Ding, Engineering fibrillar morphology for highly efficient organic solar cells[J]. Journal of Semiconductors, 2024, 45(2), 020202 doi: 10.1088/1674-4926/45/2/020202
|
Engineering fibrillar morphology for highly efficient organic solar cells
DOI: 10.1088/1674-4926/45/2/020202
More Information
-
References
[1] Wei Y N, Chen Z H, Lu G Y, et al. Binary organic solar cells breaking 19% via manipulating the vertical component distribution. Adv Mater, 2022, 34(33), 2204718 doi: 10.1002/adma.202204718[2] Zhou M W, Liao C T, Duan Y W, et al. 19.10% efficiency and 80.5% fill factor layer-by-layer organic solar cells realized by 4-bis(2-thienyl)Pyrrole-2, 5-dione based polymer additives for inducing vertical segregation morphology. Adv Mater, 2023, 35(6), 2208279 doi: 10.1002/adma.202208279[3] Chen T Y, Li S X, Li Y K, et al. Compromising charge generation and recombination of organic photovoltaics with mixed diluent strategy for certified 19.4% efficiency. Adv Mater, 2023, 35(21), 2300400 doi: 10.1002/adma.202300400[4] Ma R J, Yan C Q, Yu J S, et al. High-efficiency ternary organic solar cells with a good figure-of-merit enabled by two low-cost donor polymers. ACS Energy Lett, 2022, 7(8), 2547 doi: 10.1021/acsenergylett.2c01364[5] Zhang G C, Lin F R, Qi F, et al. Renewed prospects for organic photovoltaics. Chem Rev, 2022, 122(18), 14180 doi: 10.1021/acs.chemrev.1c00955[6] Cao J M, Yi L F, Ding L M. The origin and evolution of Y6 structure. J Semicond, 2022, 43(3), 030202 doi: 10.1088/1674-4926/43/3/030202[7] Liu Q S, Jiang Y F, Jin K, et al. 18% efficiency organic solar cells. Sci Bull (Beijing), 2020, 65(4), 272 doi: 10.1016/j.scib.2020.01.001[8] Cao J M, Nie G G, Zhang L X, et al. Star polymer donors. J Semicond, 2022, 43(7), 070201 doi: 10.1088/1674-4926/43/7/070201[9] Meng X Y, Jin K, Xiao Z, et al. Side chain engineering on D18 polymers yields 18.74% power conversion efficiency. J Semicond, 2021, 42(10), 100501 doi: 10.1088/1674-4926/42/10/100501[10] Jin K, Xiao Z, Ding L M. D18, an eximious solar polymer! J Semicond, 2021, 42(1), 010502 doi: 10.1088/1674-4926/42/1/010502[11] Jin K, Xiao Z, Ding L M. 18.69% PCE from organic solar cells. J Semicond, 2021, 42(6), 060502 doi: 10.1088/1674-4926/42/6/060502[12] Qin J Q, Zhang L X, Zuo C T, et al. A chlorinated copolymer donor demonstrates a 18.13% power conversion efficiency. J Semicond, 2021, 42(1), 010501 doi: 10.1088/1674-4926/42/1/010501[13] Zhou J, Li D H, Wang L, et al. Bicontinuous donor and acceptor fibril networks enable 19.2% efficiency pseudo-bulk heterojunction organic solar cells. Interdiscip Mater, 2023, 2(6), 866 doi: 10.1002/idm2.12129[14] Su Y L, Zhang L, Ding Z C, et al. Carrier generation engineering toward 18% efficiency organic solar cells by controlling film microstructure. Adv Energy Mater, 2022, 12(19), 2103940 doi: 10.1002/aenm.202103940[15] Zhu L, Zhang M, Xu J Q, et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat Mater, 2022, 21(6), 656 doi: 10.1038/s41563-022-01244-y[16] Li D H, Deng N, Fu Y W, et al. Fibrillization of non-fullerene acceptors enables 19% efficiency pseudo-bulk heterojunction organic solar cells. Adv Mater, 2023, 35(6), 2208211 doi: 10.1002/adma.202208211[17] Bi P Q, Wang J Q, Cui Y, et al. Enhancing photon utilization efficiency for high-performance organic photovoltaic cells via regulating phase-transition kinetics. Adv Mater, 2023, 35(16), 2210865 doi: 10.1002/adma.202210865[18] Wang J Q, Wang Y F, Bi P Q, et al. Binary organic solar cells with 19.2% efficiency enabled by solid additive. Adv Mater, 2023, 35(25), e2301583 doi: 10.1002/adma.202301583[19] Ma L J, Cui Y, Zhang J Q, et al. High-efficiency and mechanically robust all-polymer organic photovoltaic cells enabled by optimized fibril network morphology. Adv Mater, 2023, 35(9), 2208926 doi: 10.1002/adma.202208926[20] Zeng R, Zhu L, Zhang M, et al. All-polymer organic solar cells with nano-to-micron hierarchical morphology and large light receiving angle. Nat Commun, 2023, 14(1), 4148 doi: 10.1038/s41467-023-39832-4 -
Proportional views