Citation: |
Jin Sui, Jiaxiang Chen, Haolan Qu, Yu Zhang, Xing Lu, Xinbo Zou. Emission and capture characteristics of deep hole trap in n-GaN by optical deep level transient spectroscopy[J]. Journal of Semiconductors, 2024, 45(3): 032503. doi: 10.1088/1674-4926/45/3/032503
****
Jin Sui, Jiaxiang Chen, Haolan Qu, Yu Zhang, Xing Lu, Xinbo Zou, Emission and capture characteristics of deep hole trap in n-GaN by optical deep level transient spectroscopy[J]. Journal of Semiconductors, 2024, 45(3), 032503 doi: 10.1088/1674-4926/45/3/032503
|
Emission and capture characteristics of deep hole trap in n-GaN by optical deep level transient spectroscopy
DOI: 10.1088/1674-4926/45/3/032503
More Information
-
Abstract
Emission and capture characteristics of a deep hole trap (H1) in n-GaN Schottky barrier diodes (SBDs) have been investigated by optical deep level transient spectroscopy (ODLTS). Activation energy (Eemi) and capture cross-section (σp) of H1 are determined to be 0.75 eV and 4.67 × 10−15 cm2, respectively. Distribution of apparent trap concentration in space charge region is demonstrated. Temperature-enhanced emission process is revealed by decrease of emission time constant. Electric-field-boosted trap emission kinetics are analyzed by the Poole−Frenkel emission (PFE) model. In addition, H1 shows point defect capture properties and temperature-enhanced capture kinetics. Taking both hole capture and emission processes into account during laser beam incidence, H1 features a trap concentration of 2.67 × 1015 cm−3. The method and obtained results may facilitate understanding of minority carrier trap properties in wide bandgap semiconductor material and can be applied for device reliability assessment. -
References
[1] Flack T J, Pushpakaran B N, Bayne S B. GaN technology for power electronic applications: A review. J Electron Mater, 2016, 45, 2673 doi: 10.1007/s11664-016-4435-3[2] Li G Q, Wang W L, Yang W J, et al. GaN-based light-emitting diodes on various substrates: A critical review. Rep Prog Phys, 2016, 79, 056501 doi: 10.1088/0034-4885/79/5/056501[3] Kunwar S, Pandit S, Jeong J H, et al. Improved photoresponse of UV photodetectors by the incorporation of plasmonic nanoparticles on GaN through the resonant coupling of localized surface plasmon resonance. Nanomicro Lett, 2020, 12, 91 doi: 10.1007/s40820-020-00437-x[4] Jiang C Y, Jing L, Huang X, et al. Enhanced solar cell conversion efficiency of InGaN/GaN multiple quantum wells by piezo-phototronic effect. ACS Nano, 2017, 11, 9405 doi: 10.1021/acsnano.7b04935[5] Lei P, Li C Z, Wang D D, et al. Carbon-induced deep traps responsible for current collapse in AlGaN/GaN HEMTs. J Semicond, 2008, 29, 1066[6] Zhang Y M, Feng S W, Zhu H, et al. Self-heating and traps effects on the drain transient response of AlGaN/GaN HEMTs. J Semicond, 2014, 35, 104003 doi: 10.1088/1674-4926/35/10/104003[7] Zhou X Y, Tan X, Wang Y G, et al. Coeffect of trapping behaviors on the performance of GaN-based devices. J Semicond, 2018, 39, 094007 doi: 10.1088/1674-4926/39/9/094007[8] Hezabra A, Abdeslam N A, Sengouga N, et al. 2D study of AlGaN/AlN/GaN/AlGaN HEMTs’ response to traps. J Semicond, 2019, 40, 022802 doi: 10.1088/1674-4926/40/2/022802[9] Angelotti A M, Gibiino G P, Santarelli A, et al. Experimental characterization of charge trapping dynamics in 100-nm AlN/GaN/AlGaN-on-Si HEMTs by wideband transient measurements. IEEE Trans Electron Devices, 2020, 67, 3069 doi: 10.1109/TED.2020.3000983[10] Hierro A, Arehart A R, Heying B, et al. Capture kinetics of electron traps in MBE-grown n-GaN. Phys Stat Sol (b), 2001, 228, 309 doi: 10.1002/1521-3951(200111)228:1<309::AID-PSSB309>3.0.CO;2-N[11] Chen J X, Zhu M, Lu X, et al. Electrical characterization of GaN Schottky barrier diode at cryogenic temperatures. Appl Phys Lett, 2020, 116, 062102 doi: 10.1063/1.5131337[12] Zhang Y L, Zhang X, Zhu M, et al. Forward conduction instability of quasi-vertical GaN p-i-n diodes on Si substrates. IEEE Trans Electron Devices, 2020, 67, 3992 doi: 10.1109/TED.2020.3012422[13] Tokuda Y, Matsuoka Y, Ueda H, et al. DLTS study of n-type GaN grown by MOCVD on GaN substrates. Superlattices Microstruct, 2006, 40, 268 doi: 10.1016/j.spmi.2006.07.025[14] Kogiso T, Narita T, Yoshida H, et al. Characterization of hole traps in MOVPE-grown p-type GaN layers using low-frequency capacitance deep-level transient spectroscopy. Jpn J Appl Phys, 2019, 58, SCCB36 doi: 10.7567/1347-4065/ab0408[15] Kanegae K, Fujikura H, Otoki Y, et al. Deep-level transient spectroscopy studies of electron and hole traps in n-type GaN homoepitaxial layers grown by quartz-free hydride-vapor-phase epitaxy. Appl Phys Lett, 2019, 115, 012103 doi: 10.1063/1.5098965[16] Arehart A R, Corrion A, Poblenz C, et al. Comparison of deep level incorporation in ammonia and rf-plasma assisted molecular beam epitaxy n-GaN films. Phys Status Solidi (c), 2008, 5, 1750 doi: 10.1002/pssc.200778622[17] Zhu M, Ren Y, Zhou L D, et al. Temperature-dependent electrical characteristics of neutron-irradiated GaN Schottky barrier diodes. Microelectron Reliab, 2021, 125, 114345 doi: 10.1016/j.microrel.2021.114345[18] Alfieri G, Sundaramoorthy V K. Minority carrier traps in ion-implanted n-type homoepitaxial GaN. Phys Status Solidi B Basic Res, 2020, 257, 1900506 doi: 10.1002/pssb.201900506[19] Polyakov A Y, Smirnov N B, Govorkov A V, et al. Deep hole traps in n-GaN films grown by hydride vapor phase epitaxy. J Appl Phys, 2002, 91, 6580 doi: 10.1063/1.1468909[20] Amor S, Ahaitouf A, Ahaitouf A, et al. Evidence of minority carrier traps contribution in deep level transient spectroscopy measurement in n–GaN Schottky diode. Superlattices Microstruct, 2017, 101, 529 doi: 10.1016/j.spmi.2016.11.011[21] Duc T T, Pozina G, Amano H, et al. Deep level study of Mg-doped GaN using deep level transient spectroscopy and minority carrier transient spectroscopy. Phys Rev B, 2016, 94, 045206 doi: 10.1103/PhysRevB.94.045206[22] Kanegae K, Horita M, Kimoto T, et al. Accurate method for estimating hole trap concentration in n-type GaN via minority carrier transient spectroscopy. Appl Phys Express, 2018, 11, 071002 doi: 10.7567/APEX.11.071002[23] Polyakov A Y, Smirnov N B, Govorkov A V, et al. Hydride vapor phase GaN films with reduced density of residual electrons and deep traps. J Appl Phys, 2014, 115, 183706 doi: 10.1063/1.4876061[24] Polyakov A Y, Smirnov N B, Yakimov E B, et al. Electrical, optical, and structural properties of GaN films prepared by hydride vapor phase epitaxy. J Alloys Compd, 2014, 617, 200 doi: 10.1016/j.jallcom.2014.07.208[25] Polyakov A Y, Lee I H, Smirnov N B, et al. Electric field dependence of major electron trap emission in bulk β-Ga2O3: Poole–Frenkel effect versus phonon-assisted tunneling. J Phys D:Appl Phys, 2020, 53, 304001 doi: 10.1088/1361-6463/ab87c1[26] Qu H L, Zou X B. Emission and capture characteristics of electron trap (E emi = 0.8 eV) in Si-doped β-Ga2O3 epilayer. Semicond Sci Technol, 2023, 38, 015001 doi: 10.1088/1361-6641/aca045[27] Markevich V P, Halsall M P, Sun L J, et al. Electric-field enhancement of electron emission rates for deep-level traps in n-type GaN. Phys Status Solidi B Basic Res, 2023, 260, 2200545 doi: 10.1002/pssb.202200545[28] Cho H K, Kim C S, Hong C H. Electron capture behaviors of deep level traps in unintentionally doped and intentionally doped n-type GaN. J Appl Phys, 2003, 94, 1485 doi: 10.1063/1.1586981[29] Wang Z P, Chen X H, Ren F F, et al. Deep-level defects in gallium oxide. J Phys D:Appl Phys, 2021, 54, 043002 doi: 10.1088/1361-6463/abbeb1[30] Peaker A R, Markevich V P, Coutinho J. Tutorial: Junction spectroscopy techniques and deep-level defects in semiconductors. J Appl Phys, 2018, 123, 161559 doi: 10.1063/1.5011327[31] Kanegae K, Narita T, Tomita K, et al. Dual-color-sub-bandgap-light-excited isothermal capacitance transient spectroscopy for quick measurement of carbon-related hole trap density in n-type GaN. Jpn J Appl Phys, 2020, 59, SGGD05 doi: 10.35848/1347-4065/ab6863[32] Lang D V. Fast capacitance transient appartus: Application to ZnO and O centers in GaP p−n junctions. J Appl Phys, 1974, 45, 3014 doi: 10.1063/1.1663718[33] Martin G M, Mitonneau A, Pons D, et al. Detailed electrical characterisation of the deep Cr acceptor in GaAs. J Phys C Solid State Phys, 1980, 13, 3855 doi: 10.1088/0022-3719/13/20/009[34] Tian Z, Quick N R, Kar A. Characteristics of 6H-silicon carbide PIN diodes prototyping by laser doping. J Electron Mater, 2005, 34, 430 doi: 10.1007/s11664-005-0123-4[35] Chen J X, Luo H X, Qu H L, et al. Single-trap emission kinetics of vertical β-Ga2O3 Schottky diodes by deep-level transient spectroscopy. Semicond Sci Technol, 2021, 36, 055015 doi: 10.1088/1361-6641/abed8d[36] Aoshima K, Kanegae K, Horita M, et al. Electron traps formed by gamma-ray irradiation in homoepitaxial n-type GaN and their annealing behavior. AIP Adv, 2020, 10, 045023 doi: 10.1063/1.5144158[37] Chen J X, Huang W, Qu H L, et al. Study of minority carrier traps in p-GaN gate HEMT by optical deep level transient spectroscopy. Appl Phys Lett, 2022, 120, 212105 doi: 10.1063/5.0083362[38] Coelho A V P, Boudinov H. Emission rate dependence on the electric field for two trap levels in proton-irradiated n-type GaAs. Phys Rev B, 2008, 77, 235210 doi: 10.1103/PhysRevB.77.235210[39] Kumar A, Mondal S, Rao K S R K. DLTS analysis of amphoteric interface defects in high-TiO2 MOS structures prepared by sol-gel spin-coating. AIP Adv, 2015, 5, 117122 doi: 10.1063/1.4935749[40] Heo S, Chung J, Lee H I, et al. Defect visualization of Cu(InGa)(SeS)2 thin films using DLTS measurement. Sci Rep, 2016, 6, 30554 doi: 10.1038/srep30554[41] Pons D. Accurate determination of the free carrier capture kinetics of deep traps by space-charge methods. J Appl Phys, 1984, 55, 3644 doi: 10.1063/1.332914[42] Tokuda Y, Yamada Y, Shibata T, et al. Hole traps in n-GaN detected by minority carrier transient spectroscopy. Phys Status Solidi C, 2011, 8, 2239 doi: 10.1002/pssc.201000879[43] Hamilton B, Peaker A R, Wight D R. Deep-state-controlled minority-carrier lifetime in n-type gallium phosphide. J Appl Phys, 1979, 50, 6373 doi: 10.1063/1.325728[44] Shah P B, Dedhia R H, Tompkins R P, et al. DLTS and MCTS analysis of the influence of growth pressure on trap generation in MOCVD GaN. Solid State Electron, 2012, 78, 121 doi: 10.1016/j.sse.2012.05.057 -
Proportional views