Citation: |
Tingting Shi, Yuanbin Fan, Zhengyu Yan, Lai Zhou, Yang Ji, Zhiliang Yuan. GHz photon-number resolving detection with high detection efficiency and low noise by ultra-narrowband interference circuits[J]. Journal of Semiconductors, 2024, 45(3): 032702. doi: 10.1088/1674-4926/45/3/032702
****
Tingting Shi, Yuanbin Fan, Zhengyu Yan, Lai Zhou, Yang Ji, Zhiliang Yuan, GHz photon-number resolving detection with high detection efficiency and low noise by ultra-narrowband interference circuits[J]. Journal of Semiconductors, 2024, 45(3), 032702 doi: 10.1088/1674-4926/45/3/032702
|
GHz photon-number resolving detection with high detection efficiency and low noise by ultra-narrowband interference circuits
DOI: 10.1088/1674-4926/45/3/032702
More Information
-
Abstract
We demonstrate the photon-number resolution (PNR) capability of a 1.25 GHz gated InGaAs single-photon avalanche photodiode (APD) that is equipped with a simple, low-distortion ultra-narrowband interference circuit for the rejection of its background capacitive response. Through discriminating the avalanche current amplitude, we are able to resolve up to four detected photons in a single detection gate with a detection efficiency as high as 45%. The PNR capability is limited by the avalanche current saturation, and can be increased to five photons at a lower detection efficiency of 34%. The PNR capability, combined with high efficiency and low noise, will find applications in quantum information processing technique based on photonic qubits. -
References
[1] Zhong H S, Wang H, Deng Y H, et al. Quantum computational advantage using photons. Science, 2020, 370(6523), 1460 doi: 10.1126/science.abe8770[2] Yuan Z L, Plews A, Takahashi R, et al. 10 Mb/s quantum key distribution. J Lightwave Technol, 2018, 36(16), 3627 doi: 10.1109/jlt.2018.2843136[3] Healey P. Optical time domain reflectometry—a performance comparison of the analogue and photon counting techniques. Opt Quant Electron, 1984, 16, 267 doi: 10.1007/BF00619382[4] Li B, Zhang R, Wang Y, et al. Dispersion independent long-haul photon-counting optical time-domain reflectometry. Opt Lett, 2020, 45(9), 2640 doi: 10.1364/OL.391394[5] Damalakiene L, Karabanovas V, Bagdonas S, et al. Fluorescence-lifetime imaging microscopy for visualization of quantum dots’ endocytic pathway. Int J Mol Sci, 2016, 17(473), 1 doi: 10.3390/ijms17040473[6] Albertinale E, Balembois L, Billaud E, et al. Detecting spins by their fluorescence with a microwave photon counter. Nature, 2021, 600, 434 doi: 10.1038/s41586-021-04076-z[7] Wehr A, Lohr U. Airborne laser scanning-an introduction and overview. ISPRS J Photogrammetry & Remote Sensing, 1999, 54, 68 doi: 10.1016/S0924-2716(99)00011-8[8] Li Z P, Ye J T, Huang X, et al. Single-photon imaging over 200 km. Optica, 2021, 8(3), 344 doi: 10.1364/OPTICA.408657[9] Hadfield R H. Single-photon detectors for optical quantum information applications. Nature Photonics, 2009, 3(12), 696 doi: 10.1038/nphoton.2009.230[10] He T, Yang X, Tang Y, et al. High photon detection efficiency InGaAs/InP single photon avalanche diode at 250 K. Journal of Semicond, 2022, 43(10), 102301 doi: 10.1088/1674-4926/43/10/102301[11] Eaton M, Hossameldin A, Birrittella R J, et al. Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics, 2022, 17(1), 106 doi: 10.1038/s41566-022-01105-9[12] Natarajan C M, Zhang L, Coldenstrodt-Ronge H B, et al. Quantum detector tomography of a time-multiplexed superconducting nanowire single-photon detector at telecom wavelengths. Optics Express, 2013, 21(1), 893 doi: 10.1364/OE.21.000893[13] Akiba M, Inagaki K, Tsujino K. Photon number resolving SiPM detector with 1 GHz count rate. Opt Express, 2012, 20(3), 2779 doi: 10.1364/OE.20.002779[14] Cheng R, Zhou Y, Wang S, et al. A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics, 2022, 17(1), 112 doi: 10.1038/s41566-022-01119-3[15] Huang K, Wang Y, Fang J, et al. Mid-infrared photon counting and resolving via efficient frequency upconversion. Photonics Research, 2021, 9(2), 259 doi: 10.1364/PRJ.410302[16] Kim J, McKay K, Stapelbroek M, et al. Opportunities for single-photon detection using visible light photon counters. Proc SPIE Advanced Photon Counting Techniques V, 2011, 8033(1), 8033Q doi: 10.1117/12.887130[17] Gansen E, Rowe M, Rosenberg D, et al. Single-photon detection using a semiconductor quantum dot, optically gated, field-effect transistor. Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference (CLEO/QELS), 2006, JTuF4 doi: 10.1109/CLEO.2006.4628702[18] Lita A E, Miller A J, Nam S W. Counting near-infrared single-photons with 95% efficiency, Optics Express, 2008, 16(5), 3032 doi: 10.1364/OE.16.003032[19] Kardynał B E, Yuan Z L, Shields A J. An avalanche-photodiode-based photon-number-resolving detector, Nature Photonics, 2008, 2(7), 425 doi: 10.1038/nphoton.2008.101[20] Thomas O, Yuan Z L, Dynes J F, et al. Efficient photon number detection with silicon avalanche photodiodes. Appl Phys Lett, 2010, 97(3), 031102 doi: 10.1063/1.3464556[21] Yuan Z L, Dynes J F, Sharpe A W, et al. Evolution of locally excited avalanches in semiconductors, Appl Phys Lett, 2010, 96(19), 191107 doi: 10.1063/1.3425737[22] Yuan Z L, Kardynal B E, Sharpe A W, et al. High speed single photon detection in the near infrared, Appl Phys Lett, 2007, 91(4), 041114 doi: 10.1063/1.2760135[23] Liang Y, Liu Z, Fei Q, et al. GHz Photon-number-resolving detection with InGaAs/InP APD. Conference on Lasers and Electro-Optics (CLEO), 2019, JTu2A. 40 doi: 10.1364/CLEO_AT.2019.JTu2A.40[24] Fan Y, Shi T, Ji W, et al. Ultra-narrowband interference circuits enable low-noise and high-rate photon counting for InGaAs/InP avalanche photodiodes. Optics Express, 2023, 31(5), 7515 doi: 10.1364/OE.478828[25] Yan Z, Shi T, Fan Y, et al. Compact InGaAs/InP single-photon detector module with ultra-narrowband interference circuits. Adv Devices Instrum, 2023, 4, 0029 doi: 10.34133/adi.0029[26] Chen X, Wu E, Xu L, et al. Photon-number resolving performance of the InGaAs/InP avalanche photodiode with short gates. Appl Phys Lett, 2009, 95(13), 131118 doi: 10.1063/1.3242380[27] Shao L, Zhu D, Colangelo M, et al. Electrical control of surface acoustic waves, Nature Electronics, 2022, 5(6), 348 doi: DOI:10.1038/s41928-022-00773-3[28] Fukuda D, Fujii G, Numata T, et al. Photon number resolving detection with high speed and high quantum efficiency. Metrologia, 2009, 46(4), S288 doi: 10.1088/0026-1394/46/4/S29[29] Shen L, Kurtsiefer C. Countering detector manipulation attacks in quantum communication through detector self-testing, European Conference on Optical Communication (ECOC), 2022, 1 -
Proportional views