J. Semicond. > 2024, Volume 45 > Issue 3 > 032702

ARTICLES

GHz photon-number resolving detection with high detection efficiency and low noise by ultra-narrowband interference circuits

Tingting Shi1, 2, 3, Yuanbin Fan1, Zhengyu Yan1, Lai Zhou1, Yang Ji2, 3 and Zhiliang Yuan1,

+ Author Affiliations

 Corresponding author: Zhiliang Yuan, yuanzl@baqis.ac.cn

DOI: 10.1088/1674-4926/45/3/032702

PDF

Turn off MathJax

Abstract: We demonstrate the photon-number resolution (PNR) capability of a 1.25 GHz gated InGaAs single-photon avalanche photodiode (APD) that is equipped with a simple, low-distortion ultra-narrowband interference circuit for the rejection of its background capacitive response. Through discriminating the avalanche current amplitude, we are able to resolve up to four detected photons in a single detection gate with a detection efficiency as high as 45%. The PNR capability is limited by the avalanche current saturation, and can be increased to five photons at a lower detection efficiency of 34%. The PNR capability, combined with high efficiency and low noise, will find applications in quantum information processing technique based on photonic qubits.

Key words: single photon avalanche diode (APD)photon number resolution (PNR)detection efficiency



[1]
Zhong H S, Wang H, Deng Y H, et al. Quantum computational advantage using photons. Science, 2020, 370(6523), 1460 doi: 10.1126/science.abe8770
[2]
Yuan Z L, Plews A, Takahashi R, et al. 10 Mb/s quantum key distribution. J Lightwave Technol, 2018, 36(16), 3627 doi: 10.1109/jlt.2018.2843136
[3]
Healey P. Optical time domain reflectometry—a performance comparison of the analogue and photon counting techniques. Opt Quant Electron, 1984, 16, 267 doi: 10.1007/BF00619382
[4]
Li B, Zhang R, Wang Y, et al. Dispersion independent long-haul photon-counting optical time-domain reflectometry. Opt Lett, 2020, 45(9), 2640 doi: 10.1364/OL.391394
[5]
Damalakiene L, Karabanovas V, Bagdonas S, et al. Fluorescence-lifetime imaging microscopy for visualization of quantum dots’ endocytic pathway. Int J Mol Sci, 2016, 17(473), 1 doi: 10.3390/ijms17040473
[6]
Albertinale E, Balembois L, Billaud E, et al. Detecting spins by their fluorescence with a microwave photon counter. Nature, 2021, 600, 434 doi: 10.1038/s41586-021-04076-z
[7]
Wehr A, Lohr U. Airborne laser scanning-an introduction and overview. ISPRS J Photogrammetry & Remote Sensing, 1999, 54, 68 doi: 10.1016/S0924-2716(99)00011-8
[8]
Li Z P, Ye J T, Huang X, et al. Single-photon imaging over 200 km. Optica, 2021, 8(3), 344 doi: 10.1364/OPTICA.408657
[9]
Hadfield R H. Single-photon detectors for optical quantum information applications. Nature Photonics, 2009, 3(12), 696 doi: 10.1038/nphoton.2009.230
[10]
He T, Yang X, Tang Y, et al. High photon detection efficiency InGaAs/InP single photon avalanche diode at 250 K. Journal of Semicond, 2022, 43(10), 102301 doi: 10.1088/1674-4926/43/10/102301
[11]
Eaton M, Hossameldin A, Birrittella R J, et al. Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics, 2022, 17(1), 106 doi: 10.1038/s41566-022-01105-9
[12]
Natarajan C M, Zhang L, Coldenstrodt-Ronge H B, et al. Quantum detector tomography of a time-multiplexed superconducting nanowire single-photon detector at telecom wavelengths. Optics Express, 2013, 21(1), 893 doi: 10.1364/OE.21.000893
[13]
Akiba M, Inagaki K, Tsujino K. Photon number resolving SiPM detector with 1 GHz count rate. Opt Express, 2012, 20(3), 2779 doi: 10.1364/OE.20.002779
[14]
Cheng R, Zhou Y, Wang S, et al. A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics, 2022, 17(1), 112 doi: 10.1038/s41566-022-01119-3
[15]
Huang K, Wang Y, Fang J, et al. Mid-infrared photon counting and resolving via efficient frequency upconversion. Photonics Research, 2021, 9(2), 259 doi: 10.1364/PRJ.410302
[16]
Kim J, McKay K, Stapelbroek M, et al. Opportunities for single-photon detection using visible light photon counters. Proc SPIE Advanced Photon Counting Techniques V, 2011, 8033(1), 8033Q doi: 10.1117/12.887130
[17]
Gansen E, Rowe M, Rosenberg D, et al. Single-photon detection using a semiconductor quantum dot, optically gated, field-effect transistor. Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference (CLEO/QELS), 2006, JTuF4 doi: 10.1109/CLEO.2006.4628702
[18]
Lita A E, Miller A J, Nam S W. Counting near-infrared single-photons with 95% efficiency, Optics Express, 2008, 16(5), 3032 doi: 10.1364/OE.16.003032
[19]
Kardynał B E, Yuan Z L, Shields A J. An avalanche-photodiode-based photon-number-resolving detector, Nature Photonics, 2008, 2(7), 425 doi: 10.1038/nphoton.2008.101
[20]
Thomas O, Yuan Z L, Dynes J F, et al. Efficient photon number detection with silicon avalanche photodiodes. Appl Phys Lett, 2010, 97(3), 031102 doi: 10.1063/1.3464556
[21]
Yuan Z L, Dynes J F, Sharpe A W, et al. Evolution of locally excited avalanches in semiconductors, Appl Phys Lett, 2010, 96(19), 191107 doi: 10.1063/1.3425737
[22]
Yuan Z L, Kardynal B E, Sharpe A W, et al. High speed single photon detection in the near infrared, Appl Phys Lett, 2007, 91(4), 041114 doi: 10.1063/1.2760135
[23]
Liang Y, Liu Z, Fei Q, et al. GHz Photon-number-resolving detection with InGaAs/InP APD. Conference on Lasers and Electro-Optics (CLEO), 2019, JTu2A. 40 doi: 10.1364/CLEO_AT.2019.JTu2A.40
[24]
Fan Y, Shi T, Ji W, et al. Ultra-narrowband interference circuits enable low-noise and high-rate photon counting for InGaAs/InP avalanche photodiodes. Optics Express, 2023, 31(5), 7515 doi: 10.1364/OE.478828
[25]
Yan Z, Shi T, Fan Y, et al. Compact InGaAs/InP single-photon detector module with ultra-narrowband interference circuits. Adv Devices Instrum, 2023, 4, 0029 doi: 10.34133/adi.0029
[26]
Chen X, Wu E, Xu L, et al. Photon-number resolving performance of the InGaAs/InP avalanche photodiode with short gates. Appl Phys Lett, 2009, 95(13), 131118 doi: 10.1063/1.3242380
[27]
Shao L, Zhu D, Colangelo M, et al. Electrical control of surface acoustic waves, Nature Electronics, 2022, 5(6), 348 doi: DOI:10.1038/s41928-022-00773-3
[28]
Fukuda D, Fujii G, Numata T, et al. Photon number resolving detection with high speed and high quantum efficiency. Metrologia, 2009, 46(4), S288 doi: 10.1088/0026-1394/46/4/S29
[29]
Shen L, Kurtsiefer C. Countering detector manipulation attacks in quantum communication through detector self-testing, European Conference on Optical Communication (ECOC), 2022, 1
Fig. 1.  (Color online) The photon-number resolving detection setup. (a) SG: signal generator; VOA: variable optical attenuator; APD: single-photon avalanche diodes based on InGaAs/InP; UNIC: ultra-narrowband interference circuits; BSF: band stop filter with a cut-off frequency of 2.5 GHz; APM: amplifier; OSC: oscilloscope; TDC: time-digital-converter. (b) Ultranarrow interference circuit (UNIC) consists of two couplers (CPL) with a power splitting ratio of 9 : 1, a π-resistance attenuator (ATT) and a surface acoustic wave band pass filter (SAW). (c) Transmission spectrum of raw out and BSF out.

Fig. 2.  (Color online) InGaAs/InP APD has intrinsic photon number resolution. (a) Temporal evolution of the avalanche peak voltage distribution for a detected flux of three photons/pulse. (b) The temporal voltage distribution at different time delays of 0.11 ns (black), 0.22 ns (green), and 0.4 ns (red), respectively.

Fig. 3.  (Color online) The evolution of peak output signal distribution measured for different voltage applied and incident photon fluxes on the APD. The bias voltages (detection efficiencies) of the three columns are 69.5 V (34%), 70.5 V (45%), and 71.0 V (49%), respectively. The incident photon fluxes in the three rows are 0.45, 3.55, and 7.08, respectively.

Fig. 4.  (Color online) The bias voltage (black, left axis) and detection efficiency (red, right axis) vs. the mean voltage of one-photon peak voltage at a fixed photon flux μ = 2.98 photons/pulse.

Fig. 5.  (Color online) Quantitative analysis of photon number resolution for a detected flux μ = 7.08 photons/pulse. (a) Probability density distributions of avalanche peak voltages. The red solid line is a fit to the experiment data (symbols), indicating the sum of individual Gaussians (blue dashed line) of different photon numbers. (b) The mean voltage of peak output signal is proportional to the number of photons induced avalanches. (c) Comparison of the theoretical Poisson distribution (red) and the distribution of each photon number state of the APD (blue).

[1]
Zhong H S, Wang H, Deng Y H, et al. Quantum computational advantage using photons. Science, 2020, 370(6523), 1460 doi: 10.1126/science.abe8770
[2]
Yuan Z L, Plews A, Takahashi R, et al. 10 Mb/s quantum key distribution. J Lightwave Technol, 2018, 36(16), 3627 doi: 10.1109/jlt.2018.2843136
[3]
Healey P. Optical time domain reflectometry—a performance comparison of the analogue and photon counting techniques. Opt Quant Electron, 1984, 16, 267 doi: 10.1007/BF00619382
[4]
Li B, Zhang R, Wang Y, et al. Dispersion independent long-haul photon-counting optical time-domain reflectometry. Opt Lett, 2020, 45(9), 2640 doi: 10.1364/OL.391394
[5]
Damalakiene L, Karabanovas V, Bagdonas S, et al. Fluorescence-lifetime imaging microscopy for visualization of quantum dots’ endocytic pathway. Int J Mol Sci, 2016, 17(473), 1 doi: 10.3390/ijms17040473
[6]
Albertinale E, Balembois L, Billaud E, et al. Detecting spins by their fluorescence with a microwave photon counter. Nature, 2021, 600, 434 doi: 10.1038/s41586-021-04076-z
[7]
Wehr A, Lohr U. Airborne laser scanning-an introduction and overview. ISPRS J Photogrammetry & Remote Sensing, 1999, 54, 68 doi: 10.1016/S0924-2716(99)00011-8
[8]
Li Z P, Ye J T, Huang X, et al. Single-photon imaging over 200 km. Optica, 2021, 8(3), 344 doi: 10.1364/OPTICA.408657
[9]
Hadfield R H. Single-photon detectors for optical quantum information applications. Nature Photonics, 2009, 3(12), 696 doi: 10.1038/nphoton.2009.230
[10]
He T, Yang X, Tang Y, et al. High photon detection efficiency InGaAs/InP single photon avalanche diode at 250 K. Journal of Semicond, 2022, 43(10), 102301 doi: 10.1088/1674-4926/43/10/102301
[11]
Eaton M, Hossameldin A, Birrittella R J, et al. Resolution of 100 photons and quantum generation of unbiased random numbers. Nature Photonics, 2022, 17(1), 106 doi: 10.1038/s41566-022-01105-9
[12]
Natarajan C M, Zhang L, Coldenstrodt-Ronge H B, et al. Quantum detector tomography of a time-multiplexed superconducting nanowire single-photon detector at telecom wavelengths. Optics Express, 2013, 21(1), 893 doi: 10.1364/OE.21.000893
[13]
Akiba M, Inagaki K, Tsujino K. Photon number resolving SiPM detector with 1 GHz count rate. Opt Express, 2012, 20(3), 2779 doi: 10.1364/OE.20.002779
[14]
Cheng R, Zhou Y, Wang S, et al. A 100-pixel photon-number-resolving detector unveiling photon statistics. Nature Photonics, 2022, 17(1), 112 doi: 10.1038/s41566-022-01119-3
[15]
Huang K, Wang Y, Fang J, et al. Mid-infrared photon counting and resolving via efficient frequency upconversion. Photonics Research, 2021, 9(2), 259 doi: 10.1364/PRJ.410302
[16]
Kim J, McKay K, Stapelbroek M, et al. Opportunities for single-photon detection using visible light photon counters. Proc SPIE Advanced Photon Counting Techniques V, 2011, 8033(1), 8033Q doi: 10.1117/12.887130
[17]
Gansen E, Rowe M, Rosenberg D, et al. Single-photon detection using a semiconductor quantum dot, optically gated, field-effect transistor. Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference (CLEO/QELS), 2006, JTuF4 doi: 10.1109/CLEO.2006.4628702
[18]
Lita A E, Miller A J, Nam S W. Counting near-infrared single-photons with 95% efficiency, Optics Express, 2008, 16(5), 3032 doi: 10.1364/OE.16.003032
[19]
Kardynał B E, Yuan Z L, Shields A J. An avalanche-photodiode-based photon-number-resolving detector, Nature Photonics, 2008, 2(7), 425 doi: 10.1038/nphoton.2008.101
[20]
Thomas O, Yuan Z L, Dynes J F, et al. Efficient photon number detection with silicon avalanche photodiodes. Appl Phys Lett, 2010, 97(3), 031102 doi: 10.1063/1.3464556
[21]
Yuan Z L, Dynes J F, Sharpe A W, et al. Evolution of locally excited avalanches in semiconductors, Appl Phys Lett, 2010, 96(19), 191107 doi: 10.1063/1.3425737
[22]
Yuan Z L, Kardynal B E, Sharpe A W, et al. High speed single photon detection in the near infrared, Appl Phys Lett, 2007, 91(4), 041114 doi: 10.1063/1.2760135
[23]
Liang Y, Liu Z, Fei Q, et al. GHz Photon-number-resolving detection with InGaAs/InP APD. Conference on Lasers and Electro-Optics (CLEO), 2019, JTu2A. 40 doi: 10.1364/CLEO_AT.2019.JTu2A.40
[24]
Fan Y, Shi T, Ji W, et al. Ultra-narrowband interference circuits enable low-noise and high-rate photon counting for InGaAs/InP avalanche photodiodes. Optics Express, 2023, 31(5), 7515 doi: 10.1364/OE.478828
[25]
Yan Z, Shi T, Fan Y, et al. Compact InGaAs/InP single-photon detector module with ultra-narrowband interference circuits. Adv Devices Instrum, 2023, 4, 0029 doi: 10.34133/adi.0029
[26]
Chen X, Wu E, Xu L, et al. Photon-number resolving performance of the InGaAs/InP avalanche photodiode with short gates. Appl Phys Lett, 2009, 95(13), 131118 doi: 10.1063/1.3242380
[27]
Shao L, Zhu D, Colangelo M, et al. Electrical control of surface acoustic waves, Nature Electronics, 2022, 5(6), 348 doi: DOI:10.1038/s41928-022-00773-3
[28]
Fukuda D, Fujii G, Numata T, et al. Photon number resolving detection with high speed and high quantum efficiency. Metrologia, 2009, 46(4), S288 doi: 10.1088/0026-1394/46/4/S29
[29]
Shen L, Kurtsiefer C. Countering detector manipulation attacks in quantum communication through detector self-testing, European Conference on Optical Communication (ECOC), 2022, 1
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 991 Times PDF downloads: 124 Times Cited by: 0 Times

    History

    Received: 14 September 2023 Revised: 07 November 2023 Online: Accepted Manuscript: 01 December 2023Uncorrected proof: 08 December 2023Published: 15 March 2024

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Tingting Shi, Yuanbin Fan, Zhengyu Yan, Lai Zhou, Yang Ji, Zhiliang Yuan. GHz photon-number resolving detection with high detection efficiency and low noise by ultra-narrowband interference circuits[J]. Journal of Semiconductors, 2024, 45(3): 032702. doi: 10.1088/1674-4926/45/3/032702 ****Tingting Shi, Yuanbin Fan, Zhengyu Yan, Lai Zhou, Yang Ji, Zhiliang Yuan, GHz photon-number resolving detection with high detection efficiency and low noise by ultra-narrowband interference circuits[J]. Journal of Semiconductors, 2024, 45(3), 032702 doi: 10.1088/1674-4926/45/3/032702
      Citation:
      Tingting Shi, Yuanbin Fan, Zhengyu Yan, Lai Zhou, Yang Ji, Zhiliang Yuan. GHz photon-number resolving detection with high detection efficiency and low noise by ultra-narrowband interference circuits[J]. Journal of Semiconductors, 2024, 45(3): 032702. doi: 10.1088/1674-4926/45/3/032702 ****
      Tingting Shi, Yuanbin Fan, Zhengyu Yan, Lai Zhou, Yang Ji, Zhiliang Yuan, GHz photon-number resolving detection with high detection efficiency and low noise by ultra-narrowband interference circuits[J]. Journal of Semiconductors, 2024, 45(3), 032702 doi: 10.1088/1674-4926/45/3/032702

      GHz photon-number resolving detection with high detection efficiency and low noise by ultra-narrowband interference circuits

      DOI: 10.1088/1674-4926/45/3/032702
      More Information
      • Tingting Shi received the PhD degree from the Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China, in 2023. Now she is an engineer at Beijing Academy of Quantum Information Sciences. Her current research focuses on single photon avalanche diodes
      • Zhiliang Yuan received his PhD and post-doctoral training from the Institute of Semiconductors, CAS (1993−1997), and the University of Oxford (1997−2001), respectively. He then spent 20 years at Toshiba Cambridge Laboratory before returning to China in 2021 and serving as Chief Scientist at Beijing Academy of Quantum Information Sciences. He is known for high-speed quantum key distribution and electrically driven single-photon sources
      • Corresponding author: yuanzl@baqis.ac.cn
      • Received Date: 2023-09-14
      • Revised Date: 2023-11-07
      • Available Online: 2023-12-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return