Citation: |
Aleksei Almaev, Alexander Tsymbalov, Bogdan Kushnarev, Vladimir Nikolaev, Alexei Pechnikov, Mikhail Scheglov, Andrei Chikiryaka, Petr Korusenko. High-speed performance self-powered short wave ultraviolet radiation detectors based on κ(ε)-Ga2O3[J]. Journal of Semiconductors, 2024, 45(4): 042502. doi: 10.1088/1674-4926/45/4/042502
****
Aleksei Almaev, Alexander Tsymbalov, Bogdan Kushnarev, Vladimir Nikolaev, Alexei Pechnikov, Mikhail Scheglov, Andrei Chikiryaka, Petr Korusenko, High-speed performance self-powered short wave ultraviolet radiation detectors based on κ(ε)-Ga2O3[J]. Journal of Semiconductors, 2024, 45(4), 042502 doi: 10.1088/1674-4926/45/4/042502
|
High-speed performance self-powered short wave ultraviolet radiation detectors based on κ(ε)-Ga2O3
DOI: 10.1088/1674-4926/45/4/042502
More Information
-
Abstract
High-speed solar-blind short wavelength ultraviolet radiation detectors based on κ(ε)-Ga2O3 layers with Pt contacts were demonstrated and their properties were studied in detail. The κ(ε)-Ga2O3 layers were deposited by the halide vapor phase epitaxy on patterned GaN templates with sapphire substrates. The spectral dependencies of the photoelectric properties of structures were analyzed in the wavelength interval 200–370 nm. The maximum photo to dark current ratio, responsivity, detectivity and external quantum efficiency of structures were determined as: 180.86 arb. un., 3.57 A/W, 1.78 × 1012 Hz0.5∙cm∙W−1 and 2193.6%, respectively, at a wavelength of 200 nm and an applied voltage of 1 V. The enhancement of the photoresponse was caused by the decrease in the Schottky barrier at the Pt/κ(ε)−Ga2O3 interface under ultraviolet exposure. The detectors demonstrated could functionalize in self-powered mode due to built-in electric field at the Pt/κ(ε)-Ga2O3 interface. The responsivity and external quantum efficiency of the structures at a wavelength of 254 nm and zero applied voltage were 0.9 mA/W and 0.46%, respectively. The rise and decay times in self-powered mode did not exceed 100 ms. -
References
[1] Kaur D, Kumar M. A strategic review on gallium oxide based deep-ultraviolet photodetectors: Recent progress and future prospects. Adv Opt Mater, 2021, 9, 2002160 doi: 10.1002/adom.202002160[2] Hou X H, Zou Y N, Ding M F, et al. Review of polymorphous Ga2O3 materials and their solar-blind photodetector applications. J Phys D Appl Phys, 2021, 54, 043001 doi: 10.1088/1361-6463/abbb45[3] Biswas M, Nishinaka H. Thermodynamically metastable α-, ε- (or κ-), and γ-Ga2O3: From material growth to device applications. APL Mater, 2022, 10, 060701 doi: 10.1063/5.0085360[4] Chen X H, Ren F F, Gu S L, et al. Review of gallium-oxide-based solar-blind ultraviolet photodetectors. Photonics Res, 2019, 7(4), 381 doi: 10.1364/PRJ.7.000381[5] Wu C, Wu F M, Hu H Z, et al. Review of self-powered solar-blind photodetectors based on Ga2O3. Mater Today Phys, 2022, 28, 100883 doi: 10.1016/j.mtphys.2022.100883[6] Nikolskaya A, Okulich E, Korolev D, et al. Ion implantation in β-Ga2O3: Physics and technology. J Vac Sci Technol A Vac Surf Films, 2021, 39, 030802 doi: 10.1116/6.0000928[7] Titov A I, Karabeshkin K V, Struchkov A I, et al. Comparative study of radiation tolerance of GaN and Ga2O3 polymorphs. Vacuum, 2022, 200, 111005 doi: 10.1016/j.vacuum.2022.111005[8] Pearton S, Yang J C, Cary P H, et al. A review of Ga2O3 materials, processing, and devices. Appl Phys Rev, 2018, 5, 011301 doi: 10.1063/1.5006941[9] Tetelbaum D, Nikolskaya A, Korolev D, et al. Ion-beam modification of metastable gallium oxide polymorphs. Mater Lett, 2021, 302, 130346 doi: 10.1016/j.matlet.2021.130346[10] Yakovlev N, Almaev A, Butenko P, et al. Effect of Si ion implantation in α-Ga2O3 films on their gas sensitivity. IEEE Sens J, 2023, 23, 1885 doi: 10.1109/JSEN.2022.3229707[11] Polyakov A, Nikolaev V, Stepanov S, et al. Effects of sapphire substrate orientation on Sn-doped α-Ga2O3 grown by halide vapor phase epitaxy using α-Cr2O3 buffers. J Phys D Appl Phys, 2022, 55, 495102 doi: 10.1088/1361-6463/ac962f[12] Fornari R, Pavesi M, Montedoro V, et al. Thermal stability of ε-Ga2O3 polymorph. Acta Mater, 2017, 140, 411 doi: 10.1016/j.actamat.2017.08.062[13] Mulazzi M, Reichmann F, Becker A, et al. The electronic structure of ε-Ga2O3. APL Mater, 2019, 7, 022522 doi: 10.1063/1.5054395[14] Bosio A, Borelli C, Parisini A, et al. A metal-oxide contact to ε-Ga2O3 epitaxial films and relevant conduction mechanism. ECS J Solid State Sci Technol, 2020, 9, 055002 doi: 10.1149/2162-8777/ab8f37[15] Parisini A, Mazzolini P, Bierwagen O, et al. Study of SnO/ɛ-Ga2O3 p–n diodes in planar geometry. J Vac Sci Technol A Vac Surf Films, 2022, 40, 042701 doi: 10.1116/6.0001857[16] Gao Y Y, Xu Z R, Tian X S, et al. Synthesis of n-type ZrO2 doped ε-Ga2O3 thin films by PLD and fabrication of Schottky diode. J Alloys Compd, 2022, 900, 163120 doi: 10.1016/j.jallcom.2021.163120[17] Cho S B, Mishra R. Epitaxial engineering of polar ε-Ga2O3 for tunable two-dimensional electron gas at the heterointerface. Appl Phys Lett, 2018, 112, 162101 doi: 10.1063/1.5019721[18] Leone S, Fornari R, Bosi M, et al. Epitaxial growth of GaN/Ga2O3 and Ga2O3/GaN heterostructures for novel high electron mobility transistors. J Cryst Growth, 2020, 534, 125511 doi: 10.1016/j.jcrysgro.2020.125511[19] Wang J, Guo H, Zhu C Z, et al. ε-Ga2O3: A promising candidate for high-electron-mobility transistors. IEEE Electron Device Lett, 2020, 41, 1052 doi: 10.1109/LED.2020.2995446[20] Yakimov E B, Polyakov A Y, Nikolaev V I, et al. Electrical and recombination properties of polar orthorhombic κ-Ga2O3 films prepared by halide vapor phase epitaxy. Nanomaterials, 2023, 13, 1214 doi: 10.3390/nano13071214[21] Almaev A, Yakovlev N, Kopyev V, et al. High sensitivity low-temperature hydrogen sensors based on SnO2/κ(ε)-Ga2O3: Sn heterostructure. Chemosensors, 2023, 11, 325 doi: 10.3390/chemosensors11060325[22] Almaev A, Nikolaev V, Butenko P, et al. Gas sensors based on pseudohexagonal phase of gallium oxide. Phys Status Solidi B Basic Res, 2022, 259, 2100306 doi: 10.1002/pssb.202100306[23] Girolami M, Bosi M, Serpente V, et al. Orthorhombic undoped κ-Ga2O3 epitaxial thin films for sensitive, fast, and stable direct X-ray detectors. J Mater Chem C, 2023, 11, 3759 doi: 10.1039/D2TC05297K[24] Zhao X L, Zhi Y S, Cui W, et al. Characterization of hexagonal ɛ-Ga1.8Sn0.2O3 thin films for solar-blind ultraviolet applications. Opt Mater, 2016, 62, 651 doi: 10.1016/j.optmat.2016.10.056[25] Pavesi M, Fabbri F, Boschi F, et al. ε-Ga2O3 epilayers as a material for solar-blind UV photodetectors. Mater Chem Phys, 2018, 205, 502 doi: 10.1016/j.matchemphys.2017.11.023[26] Cai Y C, Zhang K, Feng Q, et al. Tin-assisted growth of ε-Ga2O3 film and the fabrication of photodetectors on sapphire substrate by PLD. Opt Mater Express, 2018, 8, 3506 doi: 10.1364/OME.8.003506[27] Qin Y, Sun H D, Long S B, et al. High-performance metal-organic chemical vapor deposition grown ε-Ga2O3 solar-blind photodetector with asymmetric Schottky electrodes. IEEE Electron Device Lett, 2019, 40, 1475 doi: 10.1109/LED.2019.2932382[28] Liu Z, Huang Y Q, Li H R, et al. Fabrication and characterization of Mg-doped ε-Ga2O3 solar-blind photodetector. Vacuum, 2020, 177, 109425 doi: 10.1016/j.vacuum.2020.109425[29] Liu Z, Huang Y Q, Zhang C, et al. Fabrication of ε-Ga2O3 solar-blind photodetector with symmetric interdigital Schottky contacts responding to low intensity light signal. J Phys D:Appl Phys, 2020, 53, 295109 doi: 10.1088/1361-6463/ab86e5[30] Cao X, Xing Y H, Han J, et al. Crystalline properties of ε-Ga2O3 film grown on c-sapphire by MOCVD and solar-blind ultraviolet photodetector. Mater Sci Semicond Process, 2021, 123, 105532 doi: 10.1016/j.mssp.2020.105532[31] Qin Y, Li L H, Zhao X L, et al. Metal–semiconductor–metal ε-Ga2O3 solar-blind photodetectors with a record-high responsivity rejection ratio and their gain mechanism. ACS Photonics, 2020, 7, 812 doi: 10.1021/acsphotonics.9b01727[32] Zhou S R, Zhang H, Peng X, et al. Fully transparent and high-performance ε-Ga2O3 photodetector arrays for solar-blind imaging and deep-ultraviolet communication. Adv Photonics Res, 2022, 3, 2270037 doi: 10.1002/adpr.202270037[33] Fei Z Y, Chen Z M, Chen W Q, et al. ε-Ga2O3 thin films grown by metal-organic chemical vapor deposition and its application as solar-blind photodetectors. J Alloys Compd, 2022, 925, 166632 doi: 10.1016/j.jallcom.2022.166632[34] Zhou S R, Zheng Q Q, Yu C X, et al. A high-performance ε-Ga2O3-based deep-ultraviolet photodetector array for solar-blind imaging. Materials, 2022, 16, 295 doi: 10.3390/ma16010295[35] Shen G H, Liu Z, Tan C K, et al. Solar-blind UV communication based on sensitive β-Ga2O3 photoconductive detector array. Appl Phys Lett, 2023, 123, 041103 doi: 10.1063/5.0161521[36] Chen Y C, Lu Y J, Liao M Y, et al. 3D solar-blind Ga2O3 photodetector array realized via origami method. Adv Funct Materials, 2019, 29, 1906040 doi: 10.1002/adfm.201906040[37] Boschi F, Bosi M, Berzina T, et al. Hetero-epitaxy of ε-Ga2O3 layers by MOCVD and ALD. J Cryst Growth, 2016, 443, 25 doi: 10.1016/j.jcrysgro.2016.03.013[38] Xiu X Q, Zhang L Y, Li Y W, et al. Application of halide vapor phase epitaxy for the growth of ultra-wide band gap Ga2O3. J Semicond, 2019, 40, 011805 doi: 10.1088/1674-4926/40/1/011805[39] Gogova D, Larsson H, Yakimova R, et al. Fast growth of high quality GaN. Phys Stat Sol (a), 2003, 200, 13 doi: 10.1002/pssa.200303342[40] Malinauskas T, Jarašiūnas K, Aleksiejunas R, et al. Contribution of dislocations to carrier recombination and transport in highly excited ELO and HVPE GaN layers. Phys Stat Sol (b), 2006, 243, 1426 doi: 10.1002/pssb.200565139[41] Fomin A V, Nikolaev A E, Nikitina I P, et al. Properties of Si-doped GaN layers grown by HVPE. Phys Stat Sol (a), 2001, 188, 433 doi: 10.1002/1521-396X(200111)188:1<433::AID-PSSA433>3.0.CO;2-T[42] Gogova D, Larsson H, Kasic A, et al. High-quality 2'' bulk-like free-standing GaN grown by hydride vapour phase epitaxy on a Si-doped metal organic vapour phase epitaxial GaN template with an ultra low dislocation density. Jpn J Appl Phys, 2005, 44, 1181 doi: 10.1143/JJAP.44.1181[43] Gogova D, Kasic A, Larsson H, et al. Optical and structural characteristics of virtually unstrained bulk-like GaN. Jpn J Appl Phys, 2004, 43, 1264 doi: 10.1143/JJAP.43.1264[44] Lee M, Yang M, Lee H Y, et al. The growth of HVPE α-Ga2O3 crystals and its solar-blind UV photodetector applications. Mater Sci Semicond Process, 2021, 123, 105565 doi: 10.1016/j.mssp.2020.105565[45] Bae J, Jeon D W, Park J H, et al. High responsivity solar-blind metal-semiconductor-metal photodetector based on α-Ga2O3. J Vac Sci Technol A Vac Surf Films, 2021, 39, 033410 doi: 10.1116/6.0000940[46] Almaev A, Nikolaev V, Kopyev V, et al. Solar-blind ultraviolet detectors based on high-quality HVPE α-Ga2O3 films with giant responsivity. IEEE Sens J, 2023, 23, 19245 doi: 10.1109/JSEN.2023.3297127[47] Dimitrova Z, Gogova D. On the structure, stress and optical properties of CVD tungsten oxide films. Mater Res Bull, 2005, 40, 333 doi: 10.1016/j.materresbull.2004.10.017[48] Mochalov L, Dorosz D, Nezhdanov A, et al. Investigation of the composition-structure-property relationship of As xTe100- x films prepared by plasma deposition. Spectrochim Acta A Mol Biomol Spectrosc, 2018, 191, 211 doi: 10.1016/j.saa.2017.10.038[49] Mochalov L, Kudryashov M, Logunov A, et al. Structural and optical properties of arsenic sulfide films synthesized by a novel PECVD-based approach. Superlattices Microstruct, 2017, 111, 1104 doi: 10.1016/j.spmi.2017.08.007[50] Stepanov S I, Pechnikov A I, Scheglov M P, et al. Growth of thick ε(ĸ)-Ga2O3 films by halide vapor phase epitaxy. Tech Phys Lett, 2022, 48, 32 doi: 10.21883/TPL.2022.10.54794.19169[51] Nikolaev V I, Polyakov A Y, Stepanov S I, et al. Record thick ĸ(ε)-Ga2O3 epitaxial layers grown on GaN/c-sapphire. Tech Phys, 2023, 68, 376 doi: 10.21883/TP.2023.03.55813.231-22[52] Liu Z, Zhi Y S, Zhang S H, et al. Ultrahigh-performance planar β-Ga2O3 solar-blind Schottky photodiode detectors. Sci China Technol Sci, 2021, 64, 59 doi: 10.1007/s11431-020-1701-2[53] Dong L P, Yu J G, Jia R X, et al. Self-powered MSM deep-ultraviolet β-Ga2O3 photodetector realized by an asymmetrical pair of Schottky contacts. Opt Mater Express, 2019, 9, 1191 doi: 10.1364/OME.9.001191[54] Tak B R, Singh R. Ultra-low noise and self-powered β-Ga2O3 deep ultraviolet photodetector array with large linear dynamic range. ACS Appl Electron Mater, 2021, 3, 2145 doi: 10.1021/acsaelm.1c00150[55] Chen T W, Zhang X D, Ma Y J, et al. Self-powered and spectrally distinctive nanoporous Ga2O3/GaN epitaxial heterojunction UV photodetectors. Adv Photonics Res, 2021, 2(8), 2100049 doi: 10.1002/adpr.202100049[56] Ye L Y, Zhou S R, Xiong Y Q, et al. Self-powered Pt/a-Ga2O3/ITO vertical Schottky junction solar-blind photodetector with excellent detection performance. Opt Express, 2023, 31, 28200 doi: 10.1364/OE.494216[57] Chen X, Liu K W, Zhang Z Z, et al. Self-powered solar-blind photodetector with fast response based on Au/β-Ga2O3 nanowires array film Schottky junction. ACS Appl Mater Interfaces, 2016, 8, 4185 doi: 10.1021/acsami.5b11956[58] Wang Y C, Wu C, Guo D Y, et al. All-oxide NiO/Ga2O3 p–n junction for self-powered UV photodetector. ACS Appl Electron Mater, 2020, 2, 2032 doi: 10.1021/acsaelm.0c00301[59] Wu C, Qiu L L, Li S, et al. High sensitive and stable self-powered solar-blind photodetector based on solution-processed all inorganic CuMO2/Ga2O3 pn heterojunction. Mater Today Phys, 2021, 17, 100335 doi: 10.1016/j.mtphys.2020.100335[60] Li P G, Shi H Z, Chen K, et al. Construction of GaN/Ga2O3 p–n junction for an extremely high responsivity self-powered UV photodetector. J Mater Chem C, 2017, 5, 10562 doi: 10.1039/C7TC03746E[61] Mondal A, Yadav M K, Shringi S, et al. Extremely low dark current and detection range extension of Ga2O3 UV photodetector using Sn alloyed nanostructures. Nanotechnology, 2020, 31, 294002 doi: 10.1088/1361-6528/ab82d4[62] Tak B R, Yang M M, Lai Y H, et al. Photovoltaic and flexible deep ultraviolet wavelength detector based on novel β-Ga2O3/muscovite heteroepitaxy. Sci Rep, 2020, 10, 16098 doi: 10.1038/s41598-020-73112-1[63] Park S, Yoon Y, Kim H, et al. A self-powered high-responsivity, fast-response-speed solar-blind ultraviolet photodetector based on CuO/β-Ga2O3 heterojunction with built-In potential control. Nanomaterials, 2023, 13, 954 doi: 10.3390/nano13050954[64] Wu C, He H L, Hu H Z, et al. Self-healing wearable self-powered deep ultraviolet photodetectors based on Ga2O3. J Semicond, 2023, 44, 072807 doi: 10.1088/1674-4926/44/7/072807[65] Polyakov A Y, Almaev A V, Nikolaev V I, et al. Mechanism for long photocurrent time constants in α-Ga2O3 UV photodetectors. ECS J Solid State Sci Technol, 2023, 12, 045002 doi: 10.1149/2162-8777/acc900[66] Yang J C, Ahn S, Ren F, et al. High reverse breakdown voltage Schottky rectifiers without edge termination on Ga2O3. Appl Phys Lett, 2017, 110, 192101 doi: 10.1063/1.4983203[67] Xu Y, Chen X H, Zhou D, et al. Carrier transport and gain mechanisms in β–Ga2O3-based metal–semiconductor–metal solar-blind Schottky photodetectors. IEEE Trans Electron Devices, 2019, 66, 2276 doi: 10.1109/TED.2019.2906906[68] Yao Y, Gangireddy R, Kim J, et al. Electrical behavior of β-Ga2O3 Schottky diodes with different Schottky metals. J Vac Sci Technol B, 2017, 35, 03D113 doi: 10.1116/1.4980042[69] Armstrong A M, Crawford M H, Jayawardena A, et al. Role of self-trapped holes in the photoconductive gain of β-gallium oxide Schottky diodes. J Appl Phys, 2016, 119, 103102 doi: 10.1063/1.4943261[70] Akyol F. Investigating the effect of self-trapped holes in the current gain mechanism of β–Ga2O3 Schottky diode photodetectors. Turk J Phys, 2021, 45, 169 doi: 10.3906/fiz-2102-12[71] Yakimov E B, Polyakov A Y, Shchemerov I V, et al. Photosensitivity of Ga2O3 Schottky diodes: Effects of deep acceptor traps present before and after neutron irradiation. APL Mater, 2020, 8, 111105 doi: 10.1063/5.0030105 -
Proportional views