Citation: |
Swagata Samanta. GaAs-based resonant tunneling diode: Device aspects from design, manufacturing, characterization and applications[J]. Journal of Semiconductors, 2023, 44(10): 103101. doi: 10.1088/1674-4926/44/10/103101
****
S Samanta. GaAs-based resonant tunneling diode: Device aspects from design, manufacturing, characterization and applications[J]. J. Semicond, 2023, 44(10): 103101. doi: 10.1088/1674-4926/44/10/103101
|
GaAs-based resonant tunneling diode: Device aspects from design, manufacturing, characterization and applications
DOI: 10.1088/1674-4926/44/10/103101
More Information
-
Abstract
This review article discusses the development of gallium arsenide (GaAs)-based resonant tunneling diodes (RTD) since the 1970s. To the best of my knowledge, this article is the first review of GaAs RTD technology which covers different epitaxial-structure design, fabrication techniques, and characterizations for various application areas. It is expected that the details presented here will help the readers to gain a perspective on the previous accomplishments, as well as have an outlook on the current trends and future developments in GaAs RTD research. -
References
[1] Esaki L, Tsu R. Superlattice and negative differential conductivity in semiconductors. IBM J Res Dev, 1970, 14, 61 doi: 10.1147/rd.141.0061[2] Tsu R, Esaki L. Tunneling in a finite superlattice. Appl Phys Lett, 1973, 22, 562 doi: 10.1063/1.1654509[3] Chang L L, Esaki L, Tsu R. Resonant tunneling in semiconductor double barriers. Appl Phys Lett, 1974, 24, 593 doi: 10.1063/1.1655067[4] Hall R N. Tunnel diodes. IRE Trans Electron Devices, 1960, 7, 1 doi: 10.1109/T-ED.1960.14584[5] Sommers H S. Tunnel diodes as high-frequency devices. Proc IRE, 1959, 47, 1201 doi: 10.1109/JRPROC.1959.287351[6] Sterzer F, Nelson D. Tunnel-diode microwave oscillators. Proc IRE, 1961, 49, 744 doi: 10.1109/JRPROC.1961.287845[7] Burrus C A. Gallium arsenide Esaki diodes for high-frequency applications. J Appl Phys, 1961, 32, 1031 doi: 10.1063/1.1736154[8] Greene J C, Sard E W. Experimental tunnel-diode mixer. Proc IRE, 1961, 49, 350[9] Robertson W J. A broadband hybrid coupled tunnel diode down converter. Proc IRE, 1960, 48, 2023[10] Reindel J. Tunnel diode circuits at nicrowave frequencies. 1961. Available: https://apps.dtic.mil/dtic/tr/fulltext/u2/269846.pdf[11] Bessho T, Hiyama Y, Niiyama H. Memory circuit using Esaki diode. Review of the Electrical Communication Laboratory, Tokyo, 1969, 17, 89[12] Roblin P, Rohdin H. High-speed heterostructure devices: From device concepts to circuit modeling. Cambridge: Cambridge University Press, 2002[13] Mizuta H, Tanoue T. The physics and applications of resonant tunnelling diodes. Cambridge: Cambridge University Press, 1995[14] Figueiredo J M L. Optoelectronic properties of resonant tunnelling diodes. Ph.D. Dissertation, University of Glasgow, 2000[15] Dobson P. Physics of semiconductor devices (2nd ed.). Phys Bull, 1982[16] Levinshtein M. Handbook series on semiconductor parameters: vol. 2 Ternary and quaternary III-V compounds. World Scientific, 1996[17] Wang Y, Zahid F, Zhu Y, et al. Publisher’s Note: Band offset of GaAs/AlxGa1–xAs heterojunctions from atomistic first principles [Appl. Phys. Lett. 102, 132109 (2013)]. Appl Phys Lett, 2013, 103, 049901 doi: 10.1063/1.4809584[18] Campbell A C, Kesan V P, Block T R, et al. Influence of MBE growth temperature on GaAs/AlAs resonant tunneling structures. J Electron Mater, 1989, 18, 585 doi: 10.1007/BF02657470[19] Nishiwaki T, Yamaguchi M, Sawaki N. AlGaAs/GaAs nano-hetero-epitaxy on a patterned GaAs substrate by MBE. AIP Conference Proceedings, Vienna (Austria), 2007, 893, 61 doi: 10.1063/1.2729770[20] Kapre R, Madhukar A, Kaviani K, et al. Realization and analysis of GaAs/AlAs/In0.1Ga0.9As based resonant tunneling diodes with high peak-to-valley ratios at room temperature. Appl Phys Lett, 1990, 56, 922 doi: 10.1063/1.102626[21] Koenig E T, Jogai B, Paulus M J, et al. Charge-quantization effects on current–voltage characteristics of AlGaAs/GaAs resonant tunneling diodes with spacer layers. J Appl Phys, 1990, 68, 3425 doi: 10.1063/1.346349[22] Kim S K, Kang T W, Kim T W. Electrical transport properties of AlAs/GaAs resonant tunneling diodes. Phys Status Solidi A, 1993, 140, K17 doi: 10.1002/pssa.2211400132[23] Schmidt T, Tewordt M, Haug R J, et al. Peak-to-valley ratio of small resonant-tunneling diodes with various barrier-thickness asymmetries. Appl Phys Lett, 1996, 68, 838 doi: 10.1063/1.116550[24] Tsuchiya M, Sakaki H. Dependence of resonant tunneling current on well widths in AlAs/GaAs/AlAs double barrier diode structures. Appl Phys Lett, 1986, 49, 88 doi: 10.1063/1.97360[25] Su B, Goldman V J, Cunningham J E. Single-electron tunneling in nanometer-scale double-barrier heterostructure devices. Phys Rev B, 1992, 46, 7644 doi: 10.1103/PhysRevB.46.7644[26] Goldman V J, Tsui D C, Cunningham J E. Observation of intrinsic bistability in resonant tunneling structures. Phys Rev Lett, 1987, 58, 1256 doi: 10.1103/PhysRevLett.58.1256[27] Wei T, Stapleton S. Effect of spacer layers on capacitance of resonant tunneling diodes. J Appl Phys, 1994, 76, 1287 doi: 10.1063/1.357788[28] Mehdi I, Mains R K, Haddad G I. Effect of spacer layer thickness on the static characteristics of resonant tunneling diodes. Appl Phys Lett, 1990, 57, 899 doi: 10.1063/1.103398[29] Singh M M, Siddiqui M J, Khan A B, et al. Effect of barriers length and doping concentration on GaAs/AlGaAs RTD. 2015 Annual IEEE India Conference (INDICON), 2016, 1 doi: 10.1109/INDICON.2015.7443753[30] Singh M M, Siddiqui M J, Khan A B, et al. Simulation study of I–V characteristics of RTD with variation in doping concentration. IMPACT-2013, 2013, 260 doi: 10.1109/MSPCT.2013.6782131[31] Wang J. Monolithic microwave/millimetre wave integrated circuit resonant tunnelling diode sources with around a milliwatt output power, Ph.D. Thesis, University of Glasgow, 2014[32] Md Zawawi M A, Missous M. Design and fabrication of low power GaAs/AlAs resonant tunneling diodes. Solid-State Electron, 2017, 138, 30 doi: 10.1016/j.sse.2017.09.004[33] Dultsev F N, Nenasheva L A. The effect of hydrogen as an additive in reactive ion etching of GaAs for obtaining polished surface. Appl Surf Sci, 2006, 253, 1287 doi: 10.1016/j.apsusc.2006.01.073[34] Wang J, Alharbi K, Khalid A, et al. Planar fabrication process development for mm-wave resonant tunneling diode (RTD) using BCB etch-back. 27th International Conference on Indium Phosphide and Related Materials, 2015[35] Ivey D G, Eicher S, Wingar S, et al. Performance of Pd–Ge based ohmic contacts to n-type GaAs. J Mater Sci Mater Electron, 1997, 8, 63 doi: 10.1023/A:1018557005117[36] Islam M S, McNally P J, Cameron D C, et al. Properties of Pd/Sn ohmic contacts on n-GaAs. J Mater Process Technol, 1998, 77, 42 doi: 10.1016/S0924-0136(97)00391-9[37] Kwak J S, Baik H K, Lee J L, et al. A low-resistance Pd/Ge/Ti/Au ohmic contact to a high-low doped GaAs field-effect transistor. Thin Solid Films, 1996, 290/291, 497 doi: 10.1016/S0040-6090(96)08967-5[38] Lim J W, Mun J K, Nam S, et al. PdGe-based ohmic contacts to high-low doped n-GaAs with and without undoped cap layer. J Phys D: Appl Phys, 2000, 33, 1611 doi: 10.1088/0022-3727/33/13/309[39] Lim J W, Mun J K, Kwak M H, et al. Performance of Pd/Ge/Au/Pd/Au ohmic contacts and its application to GaAs metal-semiconductor field-effect transistors. Solid-State Electron, 1999, 43, 1893 doi: 10.1016/S0038-1101(99)00149-5[40] Papageorgiou V. Integration of planar Gunn diodes and HEMTs for high-power MMIC oscillators. Ph.D. Thesis, University of Glasgow, 2014[41] Lin H C, Senanayake S, Cheng K Y, et al. Optimization of AuGe-Ni-Au ohmic contacts for GaAs MOSFETs. IEEE Trans Electron Devices, 2003, 50, 880 doi: 10.1109/TED.2003.812097[42] Aboelfotoh M O, Oktyabrsky S, Narayan J, et al. Electrical and microstructural characteristics of Ge/Cu ohmic contacts to n-type GaAs. J Mater Res, 1997, 12, 2325 doi: 10.1557/JMR.1997.0308[43] Erofeev E V, Loshchilov A G, Tomashevich A A, et al. Low resistance ohmic contacts to n+ -GaAs with refractory metal sidewall diffusion barrier. International J Civil Engg Technol, 2018, 9, 994[44] Oku T, Furumai M, Uchibori C J, et al. Formation of WSi-based ohmic contacts to n-type GaAs. Thin Solid Films, 1997, 300, 218 doi: 10.1016/S0040-6090(96)09511-9[45] Zhou J, Xia G Q, Li B H, et al. Electrical and structural properties of refractory metal multilayer Au/Ti/W/Ti ohmic contacts to n-GaAs. Jpn J Appl Phys, 2003, 42, 2609 doi: 10.1143/JJAP.42.2609[46] Davies D W, Morgan D V, Thomas H. Indium-based ohmic contacts to n-GaAs, fabricated using an ion-assisted deposition technique. Semicond Sci Technol, 1999, 14, 615 doi: 10.1088/0268-1242/14/7/305[47] Guan L H, Yusof A, Dolah A, et al. The etching of GaAs, AlGaAs and InGaAs in different chemicals in p-HEMT mesa layers. 2004 IEEE International Conference on Semiconductor Electronics, 2006, 1 doi: 10.1109/SMELEC.2004.1620919[48] Sioncke S, Brunco D P, Meuris M, et al. Etch rates of Ge, GaAs and InGaAs in acids, bases and peroxide based mixtures. ECS Trans, 2008, 16, 451 doi: 10.1149/1.2986802[49] Skriniarova J, Kovac J, Breza J, et al. Wet etching of InGaP and GaAs in HCl: H3PO4: H2O2. Sensors and Materials, 1998, 10, 213[50] Flemish J R, Jones K A. Selective wet etching of GaInP, GaAs, and InP in solutions of HCl, CH3COOH , and H2O2. J Electrochem Soc, 1993, 140, 844 doi: 10.1149/1.2056170[51] Noda T, Mitsuishi K, Mano T. Fabrication of submicron GaAs/AlAs double-barrier resonant tunneling diodes by wet etching with in droplets as mask. Jpn J Appl Phys, 2007, 46, L994 doi: 10.1143/JJAP.46.L994[52] Fobelets K, Vounckx R, Borghs G. A GaAs pressure sensor based on resonant tunnelling diodes. J Micromech Microeng, 1994, 4, 123 doi: 10.1088/0960-1317/4/3/005[53] Lee H J, Tse M S, Radhakrishnan K, et al. Selective wet etching of a heterostructure with citric acid-hydrogen peroxide solutions for pseudomorphic GaAs/AlxGa1–xAs/InyGa1–yAs heterojunction field effect transister fabrication. Mater Sci Eng B, 1995, 35, 230 doi: 10.1016/0921-5107(95)01414-4[54] Juang C. Selective etching of GaAs and Al0.30Ga0.70As with citric acid/hydrogen peroxide solutions. J Vac Sci Technol B, 1990, 8, 1122 doi: 10.1116/1.584928[55] Hays D C. Selective etching of compound semiconductors. Master of Science Thesis, University of Florida, 1999[56] Wang H L, Guo X, Shen G D. GaAs backside via-hole etching using ICP system. Sci China Ser E-Technol Sci, 2007, 50, 749 doi: 10.1007/s11431-007-0032-2[57] Rawal D, Agarwal V, Sharma H, et al. Dry etching of GaAs to fabricate via-hole grounds in monolithic microwave integrated circuits. Def Sci J, 2009, 59, 363 doi: 10.14429/dsj.59.1535[58] Vigneron P B, Joint F, Isac N, et al. Advanced and reliable GaAs/AlGaAs ICP-DRIE etching for optoelectronic, microelectronic and microsystem applications. Microelectron Eng, 2018, 202, 42 doi: 10.1016/j.mee.2018.09.001[59] Booker K, Mayon Y O, Jones C, et al. Deep, vertical etching for GaAs using inductively coupled plasma/reactive ion etching. J Vac Sci Technol B, 2020, 38, 012206 doi: 10.1116/1.5129184[60] Chang E Y, Van Hove J M, Pande K P. A selective dry-etch technique for GaAs MESFET gate recessing. IEEE Trans Electron Devices, 1988, 35, 1580 doi: 10.1109/16.7356[61] Lujan A S, Ramos A C S, Swart J W. Reactive ion etching of GaAs using SiCl4/Ar. Unicamp, Sau Paulo, Brazil, Available: https://www.ipen.br/biblioteca/cd/cbms/1997/SBMicro/ARTIGO34.PDF[62] Lee Y S, Upadhyaya K, Nordheden K J, et al. Selective reactive ion etching of GaAs/AlAs in BCl3/SF6 for gate recess. J Vac Sci Technol B, 2000, 18, 2505 doi: 10.1116/1.1288134[63] Liu H C, Sollner T C L G. High-frequency resonant-tunneling devices. In: Semiconductors and semimetals. Elsevier, 1994[64] Brown E R, Goodhue W D, Sollner T C L G. Fundamental oscillations up to 200 GHz in resonant tunneling diodes and new estimates of their maximum oscillation frequency from stationary-state tunneling theory. J Appl Phys, 1988, 64, 1519 doi: 10.1063/1.341827[65] Brown E R, Sollner T C L G, Goodhue W D, et al. Millimeter-band oscillations based on resonant tunneling in a double-barrier diode at room temperature. Appl Phys Lett, 1987, 50, 83 doi: 10.1063/1.97826[66] Brown E R, Sollner T C L G, Parker C D, et al. Oscillations up to 420 GHz in GaAs/AlAs resonant tunneling diodes. Appl Phys Lett, 1989, 55, 1777 doi: 10.1063/1.102190[67] Bouregba R, Vanbesien O, Saint de Pol L, et al. Al0.3Ga0.7As-GaAs microwave resonant tunneling oscillator. Ann Télécommun, 1990, 45, 184[68] Tsao A. AlAs/GaAs Double barrier resonant tunneling diodes. Ph.D. Thesis, Chapter 4, University of Texas at Austin, 1993, 45[69] Bouregba R, Vanbesien O, Mounaix P, et al. Resonant tunneling diodes as sources for millimeter and submillimeter wavelengths. IEEE Trans Microwave Theory Techn, 1993, 41, 2025 doi: 10.1109/22.273430[70] Wolak E, Özbay E, Park B G, et al. The design of GaAs/AlAs resonant tunneling diodes with peak current densities over 2 × 105A cm–2. J Appl Phys, 1991, 69, 3345 doi: 10.1063/1.348563[71] Wei T, Stapleton S, Berolo O. Capacitance and hysteresis study of AlAs/GaAs resonant tunneling diode with asymmetric spacer layers. J Appl Phys, 1995, 77, 4071 doi: 10.1063/1.359490[72] Huang Y L, Ma L, Yang F H, et al. Resonant tunnelling diodes and high electron mobility transistors integrated on GaAs substrates. Chin Phys Lett, 2006, 23, 697 doi: 10.1088/0256-307X/23/3/048[73] Van Hoof C, Genoe J, Mertens R, et al. Electroluminescence from bipolar resonant tunneling diodes. Appl Phys Lett, 1992, 60, 77 doi: 10.1063/1.107380[74] Cheng P, Harris J S Jr. Improved design of AlAs/GaAs resonant tunneling diodes. Appl Phys Lett, 1990, 56, 1676 doi: 10.1063/1.103114[75] Huang C I, Paulus M J, Bozada C A, et al. AlGaAs/GaAs double barrier diodes with high peak-to-valley current ratio. Appl Phys Lett, 1987, 51, 121 doi: 10.1063/1.98588[76] Forster A, Lange J, Gerthsen D, et al. The effect of growth temperature on AlAs/GaAs resonant tunnelling diodes. J Phys D: Appl Phys, 1994, 27, 175 doi: 10.1088/0022-3727/27/1/028[77] Alkeev N V, Averin S V, Dorofeev A A, et al. GaAs/AlAs resonant-tunneling diode for subharmonic mixers. Russ Microelectron, 2010, 39, 331 doi: 10.1134/S1063739710050057[78] Kan S C, Wu S, Sanders S, et al. Optically controlled resonant tunneling in a double-barrier diode. J Appl Phys, 1991, 69, 3384 doi: 10.1063/1.348515[79] Yang L, Draving S D, Mars D E, et al. A 50 GHz broad-band monolithic GaAs/AlAs resonant tunneling diode trigger circuit. IEEE J Solid-State Circuits, 1994, 29, 585 doi: 10.1109/4.284711[80] Leung C S Y, Wintreert-Fouquet M, Skellern D J. Switching time measurements of GaAs/AlAs and InGaAs/AlAs resonant tunnelling diodes. 1998 Conference on Optoelectronic and Microelectronic Materials and Devices, Proceedings (Cat. No. 98EX140), 2002, 144 doi: 10.1109/COMMAD.1998.791604[81] Kanaya H, Sogabe R, Maekawa T, et al. Fundamental oscillation up to 1.42 THz in resonant tunneling diodes by optimized collector spacer thickness. J Infrared, Millimeter and Terahertz Waves, 2014, 35, 425 doi: 10.1007/s10762-014-0058-z[82] Izumi R, Suzuki S, Asada M. 1.98 THz resonant-tunneling-diode oscillator with reduced conduction loss by thick antenna electrode. 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2017, 1 doi: 10.1109/IRMMW-THz.2017.8066877[83] Sellai A, Raven M S, Steenson D P, et al. Double-barrier resonant tunnelling diode three-state logic. Electron Lett, 1990, 26, 61 doi: 10.1049/el:19900040[84] Sollner T C L G, Tannenwald P E, Peck D D, et al. Quantum well oscillators. Appl Phys Lett, 1984, 45, 1319 doi: 10.1063/1.95134[85] Pfenning A, Hartmann F, Langer F B, et al. Cavity-enhanced resonant tunneling photodetector at telecommunication wavelengths. Appl Phys Lett, 2014, 104, 101109 doi: 10.1063/1.4868429[86] Pfenning A, Jurkat J, Naranjo A, et al. Resonant tunneling diode photon number resolving single-photon detectors. Proc SPIE 11128, Infrared Remote Sensing and Instrumentation XXVII, 2019, 1112808 doi: 10.1117/12.2529929[87] Watson S, Zhang W K, Tavares J, et al. Resonant tunneling diode photodetectors for optical communications. Microw Opt Technol Lett, 2019, 61, 1121 doi: 10.1002/mop.31689[88] Mutamba K, Flath M, Sigurdardottir A, et al. A GaAs pressure sensor with frequency output based on resonant tunneling diodes. IEEE Trans Instrum Meas, 1999, 48, 1333 doi: 10.1109/19.816157 -
Proportional views