J. Semicond. > Volume 32 > Issue 3 > Article Number: 035009

An on-chip temperature compensation circuit for an InGaP/GaAs HBT RF power amplifier

Li Chengzhan , Chen Zhijian , Huang Jiwei , Wang Yongping , Ma Chuanhui , Yang Hanbing , Liao Yinghao , Zhou Yong and Liu Bin

+ Author Affiliations + Find other works by these authors

PDF

Abstract: A new on-chip temperature compensation circuit for a GaAs-based HBT RF amplifier applied to wireless communication is presented. The simple compensation circuit is composed of one GaAs HBT and five resistors with various values, which allow the power amplifier to achieve better thermal characteristics with a little degradation in performance. It effectively compensates for the temperature variation of the gain and the output power of the power amplifier by regulating the base quiescent bias current. The temperature compensation circuit is applied to a 3-stage integrated power amplifier for wireless communication applications, which results in an improvement in the gain variation from 4.0 to 1.1 dB in the temperature range between –20 and +80℃.

Key words: GaAs HBTpower amplifiertemperature compensationon chip

[1]

Lei Qianqian, Lin Min, Shi Yin. A process/temperature variation tolerant RSSI. J. Semicond., 2012, 33(12): 125010. doi: 10.1088/1674-4926/33/12/125010

[2]

Qianqian Lei, Min Lin, Yin Shi. A CMOS low power, process/temperature variation tolerant RSSI with an integrated AGC loop. J. Semicond., 2013, 34(3): 035007. doi: 10.1088/1674-4926/34/3/035007

[3]

Zhu Min, Yin Junjian, Zhang Haiying. A Monolithic InGaP/GaAs HBT Power Amplifier Design with Improved Gain Flatness. J. Semicond., 2008, 29(8): 1441.

[4]

Qin Ge, Wei Liu, Bo Xu, Feng Qian, Changfei Yao. A 77-100 GHz power amplifier using 0.1-μm GaAs PHEMT technology. J. Semicond., 2017, 38(3): 035001. doi: 10.1088/1674-4926/38/3/035001

[5]

Peng Yanjun, Song Jiayou, Wang Zhigong, Tsang K F. A 2.4-GHz SiGe HBT power amplifier with bias current controlling circuit. J. Semicond., 2009, 30(5): 055008. doi: 10.1088/1674-4926/30/5/055008

[6]

Gu Jianzhong, Zhang Jian, Yu Xiaojing, Qian Rong, Li Lingyun, Sun Xiaowei. 32GHz MMIC Power Amplifier Using 0.25μm GaAs PHEMT. J. Semicond., 2006, 27(12): 2160.

[7]

Zhixiong Ren, Kefeng Zhang, Lanqi Liu, Cong Li, Xiaofei Chen, Dongsheng Liu, Zhenglin Liu, Xuecheng Zou. On-chip power-combining techniques for watt-level linear power amplifiers in 0.18 μm CMOS. J. Semicond., 2015, 36(9): 095002. doi: 10.1088/1674-4926/36/9/095002

[8]

Ting Yan, Yuming Zhang, Hongliang Lü, Yimen Zhang, Yue Wu, Yifeng Liu. Low phase noise GaAs HBT VCO in Ka-band. J. Semicond., 2015, 36(2): 025001. doi: 10.1088/1674-4926/36/2/025001

[9]

Jincan Zhang, Yuming Zhang, Hongliang Lü, Yimen Zhang, Guangxing Xiao, Guiping Ye. A 6-bit 3-Gsps ADC implemented in 1 μm GaAs HBT technology. J. Semicond., 2014, 35(8): 085005. doi: 10.1088/1674-4926/35/8/085005

[10]

Tao Yin, Chong Zhang, Huanming Wu, Qisong Wu, Haigang Yang. A 97 dB dynamic range CSA-based readout circuit with analog temperature compensation for MEMS capacitive sensors. J. Semicond., 2013, 34(11): 115005. doi: 10.1088/1674-4926/34/11/115005

[11]

Yun Tinghua, Yin Li, Wu Jianhui, Shi Longxing. Single-Stage Wide-Range CMOS VGA with Temperature Compensation and Linear-in-dB Gain Control. J. Semicond., 2007, 28(4): 518.

[12]

Bi Xiaojun, Zhang Haiying, Chen Liqiang, Huang Qinghua. A Monolithic InGaP/GaAs HBT PA for TD-SCDMA Handset Application. J. Semicond., 2008, 29(10): 1868.

[13]

Li Shun, Chen Hua, Zhou Feng. A Novel Technique for Improving Temperature Independence of Ring-ADCs. J. Semicond., 2008, 29(2): 288.

[14]

Xiaofeng Zhao, Dandan Li, Yang Yu, Dianzhong Wen. Temperature characteristics research of SOI pressure sensor based on asymmetric base region transistor. J. Semicond., 2017, 38(7): 074008. doi: 10.1088/1674-4926/38/7/074008

[15]

Jie Jin, Jia Shi, Baoli Ai, Xuguang Zhang. A highly linear power amplifier for WLAN. J. Semicond., 2016, 37(2): 025006. doi: 10.1088/1674-4926/37/2/025006

[16]

Deng Jianbao, Zhang Shilin, Li De, Zhang Yanzheng, Mao Luhong, Xie Sheng. A novel power amplifier structure for RFID tag applications. J. Semicond., 2011, 32(12): 125004. doi: 10.1088/1674-4926/32/12/125004

[17]

Zhang Shujing, Yang Ruixia, Wu Jibin, Yang Kewu. An X-Band PHEMT MMIC Power Amplifier. J. Semicond., 2006, 27(10): 1800.

[18]

J. Ajayan, D. Nirmal. 22 nm In0.75Ga0.25As channel-based HEMTs on InP/GaAs substrates for future THz applications. J. Semicond., 2017, 38(4): 044001. doi: 10.1088/1674-4926/38/4/044001

[19]

Gao Tongqiang, Zhang Chun, Chi Baoyong, Wang Zhihua. A CMOS Power Amplifier with 100% and 18% Modulation Depth for Mobile RFID Readers. J. Semicond., 2008, 29(6): 1044.

[20]

Qin Ge, Xinyu Liu, Yingkui Zheng, Chuan Ye. A flat gain GaN MMIC power amplifier for X band application. J. Semicond., 2014, 35(12): 125004. doi: 10.1088/1674-4926/35/12/125004

Search

Advanced Search >>

GET CITATION

Li C Z, Chen Z J, Huang J W, Wang Y P, Ma C H, Yang H B, Liao Y H, Zhou Y, Liu B. An on-chip temperature compensation circuit for an InGaP/GaAs HBT RF power amplifier[J]. J. Semicond., 2011, 32(3): 035009. doi: 10.1088/1674-4926/32/3/035009.

Export: BibTex EndNote

Article Metrics

Article views: 2357 Times PDF downloads: 3209 Times Cited by: 0 Times

History

Manuscript received: 18 August 2015 Manuscript revised: 09 November 2010 Online: Published: 01 March 2011

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误