J. Semicond. > Volume 32 > Issue 3 > Article Number: 036001

MOS structure fabrication by thermal oxidation of multilayer metal thin films

Mohammad Orvatinia and Atefeh Chahkoutahi

+ Author Affiliations + Find other works by these authors

PDF

Abstract: A novel approach for the fabrication of a metal oxide semiconductor (MOS) structure was reported. The process comprises electrochemical deposition of aluminum and zinc layers on a base of nickel–chromium alloy. This two-layer structure was thermally oxidized at 400 ℃ for 40 min to produce thin layers of aluminum oxide as an insulator and zinc oxide as a semiconductor on a metallic substrate. Using deposition parameters, device dimensions and SEM micrographs of the layers, the device parameters were calculated. The resultant MOS structure was characterized by a CV curve method. From this curve, the device maximum capacitance and threshold voltage were estimated to be about 0.74 nF and –2.9 V, respectively, which are in the order of model-based calculations.

Key words: MOS structure

[1]

Ni Henan, Wu Liangcai, Song Zhitang, Hui Chun. Memory characteristics of an MOS capacitor structure with double-layer semiconductor and metal heterogeneous nanocrystals. J. Semicond., 2009, 30(11): 114003. doi: 10.1088/1674-4926/30/11/114003

[2]

Gao Jinxia, Zhang Yimen, Zhang Yuming. C-V Characteristic Distortion in the Pinch-Off Mode of a Buried Channel MOS Structure in 4H-SiC. J. Semicond., 2006, 27(7): 1259.

[3]

Wang Chong, Yue Yuanzheng, Ma Xiaohua, Hao Yue, Feng Qian, Zhang Jincheng. Development and Characteristic Analysis of MOS AlGaN/GaN HEMTs. J. Semicond., 2008, 29(8): 1557.

[4]

Dai Yuehua, Chen Junning, Ke Daoming, Sun Jiae, Xu Chao. An Analytical Model for Polysilicon Quantization in MOS Devices. J. Semicond., 2005, 26(11): 2164.

[5]

Li Jingbo, Wang Linwang, Wei Suhuai. Electronic Structure of Semiconductor Nanocrystals. J. Semicond., 2006, 27(2): 191.

[6]

Yuxin Wang, Rongbin Hu, Ruzhang Li, Guangbing Chen, Dongbing Fu, Wu Lu. Total dose effects on the matching properties of deep submicron MOS transistors. J. Semicond., 2014, 35(6): 064007. doi: 10.1088/1674-4926/35/6/064007

[7]

Anna V. Krivosheeva, Victor L. Shaposhnikov, Victor E. Borisenko, Jean-Louis Lazzari, Chow Waileong, Julia Gusakova, Beng Kang Tay. Theoretical study of defect impact on two-dimensional MoS2. J. Semicond., 2015, 36(12): 122002. doi: 10.1088/1674-4926/36/12/122002

[8]

Ce Huang, Yibo Jin, Weiyi Wang, Lei Tang, Chaoyu Song, Faxian Xiu. Manganese and chromium doping in atomically thin MoS2. J. Semicond., 2017, 38(3): 033004. doi: 10.1088/1674-4926/38/3/033004

[9]

Li Dongmei, Huangfu Liying, Gou Qiujing, Wang Zhihua. Total Ionizing Dose Radiation Effects on MOS Transistors with Different Layouts. J. Semicond., 2007, 28(2): 171.

[10]

M. Benhaliliba, C.E. Benouis, M.S. Aida, A. Ayeshamariam. Fabrication of a novel MOS diode by indium incorporation control for microelectronic applications. J. Semicond., 2017, 38(6): 064004. doi: 10.1088/1674-4926/38/6/064004

[11]

Wang Chong, Ma Xiaohua, Feng Qian, Hao Yue, Zhang Jincheng, Mao Wei. Development and characteristics analysis of recessed-gate MOS HEMT. J. Semicond., 2009, 30(5): 054002. doi: 10.1088/1674-4926/30/5/054002

[12]

Wang Baomin, Ru Guoping, Jiang Yulong, Qu Xinping, Li Bingzong, Liu Ran. Capacitance–voltage characterization of fully silicided gated MOS capacitor. J. Semicond., 2009, 30(3): 034002. doi: 10.1088/1674-4926/30/3/034002

[13]

Chih-Tang Sah, Bin B. Jie. Bipolar Theory of MOS Field-Effect Transistors and Experiments. J. Semicond., 2007, 28(10): 1497.

[14]

Zhijie Wang. Unique interfacial thermodynamics of few-layer 2D MoS. J. Semicond., 2019, 40(6): 060202. doi: 10.1088/1674-4926/40/6/060202

[15]

Shuaiqin Wu, Guangjian Wu, Xudong Wang, Yan Chen, Tie Lin, Hong Shen, Weida Hu, Xiangjian Meng, Jianlu Wang, Junhao Chu. A gate-free MoS2 phototransistor assisted by ferroelectrics. J. Semicond., 2019, 40(9): 092002. doi: 10.1088/1674-4926/40/9/092002

[16]

Zhiguo Xie, Cheng Li, Binhai Yu, Yaohao Wang. A novel COB structure with integrated multifunction. J. Semicond., 2013, 34(5): 055001. doi: 10.1088/1674-4926/34/5/055001

[17]

Tang Zhaohuan, Hu Gangyi, Chen Guangbing, Tan Kaizhou, Liu Yong, Luo Jun, Xu Xueliang. A novel structure for improving the SEGR of a VDMOS. J. Semicond., 2012, 33(4): 044002. doi: 10.1088/1674-4926/33/4/044002

[18]

Qiao Ming, Fang Jian, Li Zhaoji, Zhang Bo. HVIC with Coupled Level Shift Structure. J. Semicond., 2006, 27(11): 2040.

[19]

Tan Kaizhou, Zhang Jing, Xu Shiliu, Zhang Zhengfan, Yang Yonghui, Chen Jun, Liang Tao. Study of hybrid orientation structure wafer. J. Semicond., 2011, 32(6): 063002. doi: 10.1088/1674-4926/32/6/063002

[20]

Tang Ying, Liu Su, Li Siyuan, Wu Rong, Chang Peng. A Novel Structure for a Static Induction Transistor. J. Semicond., 2007, 28(6): 918.

Search

Advanced Search >>

GET CITATION

M Orvatinia, A Chahkoutahi. MOS structure fabrication by thermal oxidation of multilayer metal thin films[J]. J. Semicond., 2011, 32(3): 036001. doi: 10.1088/1674-4926/32/3/036001.

Export: BibTex EndNote

Article Metrics

Article views: 2856 Times PDF downloads: 2192 Times Cited by: 0 Times

History

Manuscript received: Manuscript revised: 27 October 2010 Online: Published: 01 March 2011

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误