J. Semicond. > Volume 33 > Issue 1 > Article Number: 011001

MOS Capacitance–Voltage Characteristics: IV. Trapping Capacitance from 3-Charge-State Impurities

Jie Binbin and Sah Chihtang

+ Author Affiliations + Find other works by these authors


Abstract: Metal-Oxide-Semiconductor Capacitance-Voltage (MOSCV) characteristics containing giant carrier trapping capacitances from 3-charge-state or 2-energy-level impurities are presented for not-doped, n-doped, p-doped and compensated silicon containing the double-donor sulfur and iron, the double-acceptor zinc, and the amphoteric or one-donor and one-acceptor gold and silver impurities. These impurities provide giant trapping capacitances at trapping energies from 200 to 800 meV (50 to 200 THz and 6 to 1.5 μm), which suggest potential sub-millimeter, far-infrared and spin electronics applications.

Key words: multiple charge statestrapping capacitancedopant impurity


Jie Binbin, Sah Chihtang. MOS Capacitance–Voltage Characteristics from Electron-Trapping at Dopant Donor Impurity. J. Semicond., 2011, 32(4): 041001. doi: 10.1088/1674-4926/32/4/041001


Jie Binbin, Sah Chihtang. MOS Capacitance-Voltage Characteristics II. Sensitivity of Electronic Trapping at Dopant Impurity from Parameter Variations. J. Semicond., 2011, 32(12): 121001. doi: 10.1088/1674-4926/32/12/121001


Jie Binbin, Sah Chihtang. MOS Capacitance-Voltage Characteristics III. Trapping Capacitance from 2-Charge-State Impurities. J. Semicond., 2011, 32(12): 121002. doi: 10.1088/1674-4926/32/12/121002


Jie Binbin, Sah Chihtang. MOS Capacitance-Voltage Characteristics: V. Methods to Enhance the Trapping Capacitance. J. Semicond., 2012, 33(2): 021001. doi: 10.1088/1674-4926/33/2/021001


Ken K. Chin. Local charge neutrality condition, Fermi level and majority carrier density of a semiconductor with multiple localized multi-level intrinsic/impurity defects. J. Semicond., 2011, 32(11): 112001. doi: 10.1088/1674-4926/32/11/112001


Zengru Zhao, Gaofeng Wang. Shallow impurity states in AlxGa1-xAs cylindrical quantum wire. J. Semicond., 2014, 35(8): 082002. doi: 10.1088/1674-4926/35/8/082002


Zhao Zengru, Liang Xixia. Effects of electron– and impurity-ion–LO phonon couples on the impurity states in cylindrical quantum wires. J. Semicond., 2009, 30(6): 062002. doi: 10.1088/1674-4926/30/6/062002


Hu Hao, Chen Xingbi. A simple expression for impurity distribution after multiple diffusion processes. J. Semicond., 2010, 31(5): 052004. doi: 10.1088/1674-4926/31/5/052004


Jin Rui, Liu Xiaoyan, Du Gang, Kang Jinfeng, Han Ruqi. Effect of trapped charge accumulation on the retention of charge trapping memory. J. Semicond., 2010, 31(12): 124016. doi: 10.1088/1674-4926/31/12/124016


Yun Kang, Sheng Wang, Xianli Li. Electron energy states in a two-dimensional GaAs quantum ring with hydrogenic donor impurity in the presence of magnetic field. J. Semicond., 2015, 36(3): 032003. doi: 10.1088/1674-4926/36/3/032003


Jing Luo, Jinlong Lu, Hongpeng Zhao, Yuehua Dai, Qi Liu, Jin Yang, Xianwei Jiang, Huifang Xu. A first-principle investigation of the oxygen defects in Si3N4-based charge trapping memories. J. Semicond., 2014, 35(1): 014004. doi: 10.1088/1674-4926/35/1/014004


Xinkai Li, Zongliang Huo, Lei Jin, Dandan Jiang, Peizhen Hong, Qiang Xu, Zhaoyun Tang, Chunlong Li, Tianchun Ye. Impact of continuing scaling on the device performance of 3D cylindrical junction-less charge trapping memory. J. Semicond., 2015, 36(9): 094008. doi: 10.1088/1674-4926/36/9/094008


Gu Haiming, Pan Liyang, Zhu Peng, Wu Dong, Zhang Zhigang, Xu Jun. Novel multi-bit non-uniform channel charge trapping memory device with virtual-source NAND flash array. J. Semicond., 2010, 31(10): 104009. doi: 10.1088/1674-4926/31/10/104009


Sangeeta Singh, P. N. Kondekar, Pawan Pal. Transient performance estimation of charge plasma based negative capacitance ewline junctionless tunnel FET. J. Semicond., 2016, 37(2): 024003. doi: 10.1088/1674-4926/37/2/024003


Jianbing Cheng, Xiaojuan Xia, Tong Jian, Yufeng Guo, Shujuan Yu, Hao Yang. Electric field optimized LDMOST using multiple decrescent and reverse charge regions. J. Semicond., 2014, 35(7): 074007. doi: 10.1088/1674-4926/35/7/074007


Chen Xin'an, Huang Qing'an. Impurity Distribution of Silicon Direct Bonding. J. Semicond., 2006, 27(11): 2051.


Xiaosong Zhao, Weihua Han, Hao Wang, Liuhong Ma, Xiaoming Li, Wang Zhang, Wei Yan, Fuhua Yang. Dopant atoms as quantum components in silicon nanoscale devices. J. Semicond., 2018, 39(6): 061003. doi: 10.1088/1674-4926/39/6/061003


Lü Weifeng, Sun Lingling. Modeling of current mismatch induced by random dopant fluctuation in nano-MOSFETs. J. Semicond., 2011, 32(8): 084003. doi: 10.1088/1674-4926/32/8/084003


Hao Wu, Miao Xu, Guangxing Wan, Huilong Zhu, Lichuan Zhao, Xiaodong Tong, Chao Zhao, Dapeng Chen, Tianchun Ye. On substrate dopant engineering for ET-SOI MOSFETs with UT-BOX. J. Semicond., 2014, 35(11): 114006. doi: 10.1088/1674-4926/35/11/114006


Jing Zhang, Ding Liu, Yani Pan. Suppression of oxygen and carbon impurity deposition in the thermal system of Czochralski monocrystalline silicon. J. Semicond., 2020, 41(10): 102702. doi: 10.1088/1674-4926/41/10/102702


Advanced Search >>


Jie B B, Sah C T. MOS Capacitance–Voltage Characteristics: IV. Trapping Capacitance from 3-Charge-State Impurities[J]. J. Semicond., 2012, 33(1): 011001. doi: 10.1088/1674-4926/33/1/011001.

Export: BibTex EndNote

Article Metrics

Article views: 2410 Times PDF downloads: 1969 Times Cited by: 0 Times


Manuscript received: 18 August 2015 Manuscript revised: Online: Published: 01 January 2012

Email This Article

User name: