J. Semicond. > Volume 34 > Issue 10 > Article Number: 103001

The effect of solution concentration on the physical and electrochemical properties of vanadium oxide films deposited by spray pyrolysis

M. Mousavi 1, , , A. Kompany 1, 2, , N. Shahtahmasebi 1, 2, and M.M. Bagheri-Mohagheghi 3,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: Vanadium oxide thin films were prepared on glass substrates by using the spray pyrolysis technique. The effect of solution concentration (0.1 M, 0.2 M and 0.3 M) on the nanostructural, electrical, optical, and electrochromic properties of deposited films were investigated using X-ray diffraction, scanning electron microscopy, UV-vis spectroscopy, and cyclic volta-metrics. The X-ray diffraction shows that only the sample at 0.1 M has a single β-V2O5 phase and the others have mixed phases of vanadium oxide. The lowest sheet resistance was obtained for the samples prepared at 0.3 M solution. It was also found that the optical transparency of the samples changes from 70% to 35% and the optical band gap of the samples was in the range of 2.20 to 2.41 eV, depending on the morality of solution. The cycle voltammogram shows that the sample prepared at 0.3 M has one-step electerochoromic but the other samples have two-step electerochoromic. The results show a correlation between the cycle voltammogram and the physical properties of the films.

Key words: vanadium oxidethin filmsoptical propertiescycle voltammogram

Abstract: Vanadium oxide thin films were prepared on glass substrates by using the spray pyrolysis technique. The effect of solution concentration (0.1 M, 0.2 M and 0.3 M) on the nanostructural, electrical, optical, and electrochromic properties of deposited films were investigated using X-ray diffraction, scanning electron microscopy, UV-vis spectroscopy, and cyclic volta-metrics. The X-ray diffraction shows that only the sample at 0.1 M has a single β-V2O5 phase and the others have mixed phases of vanadium oxide. The lowest sheet resistance was obtained for the samples prepared at 0.3 M solution. It was also found that the optical transparency of the samples changes from 70% to 35% and the optical band gap of the samples was in the range of 2.20 to 2.41 eV, depending on the morality of solution. The cycle voltammogram shows that the sample prepared at 0.3 M has one-step electerochoromic but the other samples have two-step electerochoromic. The results show a correlation between the cycle voltammogram and the physical properties of the films.

Key words: vanadium oxidethin filmsoptical propertiescycle voltammogram



References:

[1]

Darling R B, Iwanaga S. Structure, properties, and MEMS and microelectronic applications of vanadium oxides[J]. Sadhana, 2009, 34: 531. doi: 10.1007/s12046-009-0025-x

[2]

Wang Y, Cao G. Synthesis and enhanced intercalation properties of nanostructured vanadium oxides[J]. Chem Mater, 2006, 18: 2787. doi: 10.1021/cm052765h

[3]

Xu Y, Schoonen M A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals[J]. Am Mineral, 2000, 85: 543. doi: 10.2138/am-2000-0416

[4]

Livage J. Optical and electrical properties of vanadium oxide syntheses from alkoxides[J]. Coord Chem Rev, 1999, 192: 391.

[5]

Millet M, Pereira-Ramos J P, Sabbar E M. A new hydrated sodium vanadium bronze as Li insertion compound[J]. Solid State Ionics, 1998, 112: 319. doi: 10.1016/S0167-2738(98)00202-1

[6]

Livage J, Ganguli D. Sol-gel electrochromic coatings and devices:a review[J]. Sol Energy Mater Sol Cells, 2001, 68: 365. doi: 10.1016/S0927-0248(00)00369-X

[7]

Lee K, Wang Y, Cao G Z. Dependence of electrochemical properties of vanadium oxide films on their nano-and microstructures[J]. J Phys Chem B, 2005, 109: 16700. doi: 10.1021/jp051686q

[8]

Liu J F, Wang X, Peng Q. Vanadium pentoxide nanobelts:highly selective and stable ethanol sensor materials[J]. Adv Mater, 2005, 17: 764. doi: 10.1002/(ISSN)1521-4095

[9]

Nah Y C, Ghicov A, Kim D. Enhanced electrochromic properties of self-organized nanoporous WO3[J]. Electrochem Commun, 2008, 10: 1777. doi: 10.1016/j.elecom.2008.09.017

[10]

Zhang J G, McGraw J M, Turner J, at el. Charging capacity and cycling stability of VOx films prepared by pulsed laser deposition[J]. J Electrochem Soc, 1997, 144: 1630. doi: 10.1149/1.1837652

[11]

Ramana C V, Hussain O M, Naidu B S. characterization of electron-beam evaporated V2O5 thin films[J]. Thin Solid Films, 1997, 305: 219. doi: 10.1016/S0040-6090(97)00141-7

[12]

Aita C R, Liu Y L, Kao M L. Optical behavior of sputter-deposited vanadium pentoxide[J]. J Appl Phys, 1986, 60: 749. doi: 10.1063/1.337425

[13]

Meng L J, Silva R A, Cui H N. Optical and structural properties of vanadium pent oxide films prepared by dc reactive magnetron sputtering[J]. Thin Solid Films, 2006, 515: 195. doi: 10.1016/j.tsf.2005.12.061

[14]

El Mandouh Z S, Selim M S. Physical properties of vanadium pentoxide sol gel films[J]. Thin Solid Films, 2000, 371: 259. doi: 10.1016/S0040-6090(00)01003-8

[15]

Bouzidi A, Benramdane N, Nakrela A. First synthesis of vanadium oxide thin films by spray pyrolysis technique[J]. Mater Sci Eng B, 2002, 95: 141. doi: 10.1016/S0921-5107(02)00224-6

[16]

Avellaneda C O. Electrochromic performance of sol-gel deposited V2O5:Ta films[J]. Mater Sci Eng B, 2007, 138: 118. doi: 10.1016/j.mseb.2006.06.007

[17]

Bagheri-Mohagheghi M M, Shahtahmasebi N, Alinejad M R. Fe-doped SnO2 transparent semi-conducting thin films deposited by spray pyrolysis technique:thermoelectric and p-type conductivity properties[J]. Solid State Sci, 2009, 11: 233. doi: 10.1016/j.solidstatesciences.2008.05.005

[18]

Bagheri-Mohagheghi M M, Shahtahmasebi N, Alinejad M R. The effect of the post annealing temperature on the nano-structure and energy band gap of the SnO2 semiconducting oxide nano-particles synthesized by polymerized-complex sol-gel method[J]. Physica B, 2008, 403: 2431. doi: 10.1016/j.physb.2008.01.004

[19]

Su Q, Lan W, Wang Y Y. Structural characterization of β -V2O5 films prepared by DC reactive magnetron sputtering[J]. Appl Surface Sci, 2009, 255: 4177. doi: 10.1016/j.apsusc.2008.11.002

[20]

Cheng K C, Chen F R, Kai J J. V2O5 nanowires as a functional material for electrochoromic device[J]. Sol Energy Mater Sol Cells, 2006, 90: 1156. doi: 10.1016/j.solmat.2005.07.006

[21]

Birgin E G, Chambouleyron I, Martínez J M. Estimation of the optical constants and the thickness of thin films using unconstrained optimization[J]. J Comput Phys, 1999, 151: 862. doi: 10.1006/jcph.1999.6224

[22]

Mahmud S A, Akl A A, Kamal H. Opto-structural, electrical and electrochromic properties of crystalline nickel oxide thin films prepared by spray pyrolysis[J]. Physica B, 2002, 311: 366. doi: 10.1016/S0921-4526(01)01024-9

[23]

Kamal H, Elmaghraby E K, Ali S A. Characterization of nickel oxide films deposited at different substrate temperatures using spray pyrolysis[J]. J Cryst Growth, 2004, 262: 424. doi: 10.1016/j.jcrysgro.2003.10.090

[24]

D'Elia L F, Rincon L, Orti z R. Test of vanadium pentoxide as anode for the electro oxidation of toluene A theoretical approach of the electrode process[J]. Electrochim Acta, 2004, 50: 217.

[25]

Yu D M, Zhang S T, Liu D W. Effect of manganese doping on Li-ion intercalation properties of V2O5 films[J]. J Mate Chem, 2010, 20: 10841. doi: 10.1039/c0jm01252a

[1]

Darling R B, Iwanaga S. Structure, properties, and MEMS and microelectronic applications of vanadium oxides[J]. Sadhana, 2009, 34: 531. doi: 10.1007/s12046-009-0025-x

[2]

Wang Y, Cao G. Synthesis and enhanced intercalation properties of nanostructured vanadium oxides[J]. Chem Mater, 2006, 18: 2787. doi: 10.1021/cm052765h

[3]

Xu Y, Schoonen M A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals[J]. Am Mineral, 2000, 85: 543. doi: 10.2138/am-2000-0416

[4]

Livage J. Optical and electrical properties of vanadium oxide syntheses from alkoxides[J]. Coord Chem Rev, 1999, 192: 391.

[5]

Millet M, Pereira-Ramos J P, Sabbar E M. A new hydrated sodium vanadium bronze as Li insertion compound[J]. Solid State Ionics, 1998, 112: 319. doi: 10.1016/S0167-2738(98)00202-1

[6]

Livage J, Ganguli D. Sol-gel electrochromic coatings and devices:a review[J]. Sol Energy Mater Sol Cells, 2001, 68: 365. doi: 10.1016/S0927-0248(00)00369-X

[7]

Lee K, Wang Y, Cao G Z. Dependence of electrochemical properties of vanadium oxide films on their nano-and microstructures[J]. J Phys Chem B, 2005, 109: 16700. doi: 10.1021/jp051686q

[8]

Liu J F, Wang X, Peng Q. Vanadium pentoxide nanobelts:highly selective and stable ethanol sensor materials[J]. Adv Mater, 2005, 17: 764. doi: 10.1002/(ISSN)1521-4095

[9]

Nah Y C, Ghicov A, Kim D. Enhanced electrochromic properties of self-organized nanoporous WO3[J]. Electrochem Commun, 2008, 10: 1777. doi: 10.1016/j.elecom.2008.09.017

[10]

Zhang J G, McGraw J M, Turner J, at el. Charging capacity and cycling stability of VOx films prepared by pulsed laser deposition[J]. J Electrochem Soc, 1997, 144: 1630. doi: 10.1149/1.1837652

[11]

Ramana C V, Hussain O M, Naidu B S. characterization of electron-beam evaporated V2O5 thin films[J]. Thin Solid Films, 1997, 305: 219. doi: 10.1016/S0040-6090(97)00141-7

[12]

Aita C R, Liu Y L, Kao M L. Optical behavior of sputter-deposited vanadium pentoxide[J]. J Appl Phys, 1986, 60: 749. doi: 10.1063/1.337425

[13]

Meng L J, Silva R A, Cui H N. Optical and structural properties of vanadium pent oxide films prepared by dc reactive magnetron sputtering[J]. Thin Solid Films, 2006, 515: 195. doi: 10.1016/j.tsf.2005.12.061

[14]

El Mandouh Z S, Selim M S. Physical properties of vanadium pentoxide sol gel films[J]. Thin Solid Films, 2000, 371: 259. doi: 10.1016/S0040-6090(00)01003-8

[15]

Bouzidi A, Benramdane N, Nakrela A. First synthesis of vanadium oxide thin films by spray pyrolysis technique[J]. Mater Sci Eng B, 2002, 95: 141. doi: 10.1016/S0921-5107(02)00224-6

[16]

Avellaneda C O. Electrochromic performance of sol-gel deposited V2O5:Ta films[J]. Mater Sci Eng B, 2007, 138: 118. doi: 10.1016/j.mseb.2006.06.007

[17]

Bagheri-Mohagheghi M M, Shahtahmasebi N, Alinejad M R. Fe-doped SnO2 transparent semi-conducting thin films deposited by spray pyrolysis technique:thermoelectric and p-type conductivity properties[J]. Solid State Sci, 2009, 11: 233. doi: 10.1016/j.solidstatesciences.2008.05.005

[18]

Bagheri-Mohagheghi M M, Shahtahmasebi N, Alinejad M R. The effect of the post annealing temperature on the nano-structure and energy band gap of the SnO2 semiconducting oxide nano-particles synthesized by polymerized-complex sol-gel method[J]. Physica B, 2008, 403: 2431. doi: 10.1016/j.physb.2008.01.004

[19]

Su Q, Lan W, Wang Y Y. Structural characterization of β -V2O5 films prepared by DC reactive magnetron sputtering[J]. Appl Surface Sci, 2009, 255: 4177. doi: 10.1016/j.apsusc.2008.11.002

[20]

Cheng K C, Chen F R, Kai J J. V2O5 nanowires as a functional material for electrochoromic device[J]. Sol Energy Mater Sol Cells, 2006, 90: 1156. doi: 10.1016/j.solmat.2005.07.006

[21]

Birgin E G, Chambouleyron I, Martínez J M. Estimation of the optical constants and the thickness of thin films using unconstrained optimization[J]. J Comput Phys, 1999, 151: 862. doi: 10.1006/jcph.1999.6224

[22]

Mahmud S A, Akl A A, Kamal H. Opto-structural, electrical and electrochromic properties of crystalline nickel oxide thin films prepared by spray pyrolysis[J]. Physica B, 2002, 311: 366. doi: 10.1016/S0921-4526(01)01024-9

[23]

Kamal H, Elmaghraby E K, Ali S A. Characterization of nickel oxide films deposited at different substrate temperatures using spray pyrolysis[J]. J Cryst Growth, 2004, 262: 424. doi: 10.1016/j.jcrysgro.2003.10.090

[24]

D'Elia L F, Rincon L, Orti z R. Test of vanadium pentoxide as anode for the electro oxidation of toluene A theoretical approach of the electrode process[J]. Electrochim Acta, 2004, 50: 217.

[25]

Yu D M, Zhang S T, Liu D W. Effect of manganese doping on Li-ion intercalation properties of V2O5 films[J]. J Mate Chem, 2010, 20: 10841. doi: 10.1039/c0jm01252a

[1]

R. M. Hodlur, M. K. Rabinal. Influence of pH of spray solution on optoelectronic properties of cadmium oxide thin films. J. Semicond., 2015, 36(3): 033003. doi: 10.1088/1674-4926/36/3/033003

[2]

Yacine Aoun, Boubaker Benhaoua, Brahim Gasmi, Said Benramache. Structural, optical and electrical properties of zinc oxide thin films deposited by a spray pyrolysis technique. J. Semicond., 2015, 36(1): 013002. doi: 10.1088/1674-4926/36/1/013002

[3]

R. Suresh, V. Ponnuswamy, J. Chandrasekaran, D. Manoharan, R. Mariappan. The effect of annealing temperature and the characteristics of p-n junction diodes based on sprayed polyaniline/ZnO thin films. J. Semicond., 2013, 34(8): 083001. doi: 10.1088/1674-4926/34/8/083001

[4]

Xinliang Chen, Jieming Liu, Jia Fang, Ze Chen, Ying Zhao, Xiaodan Zhang. High haze textured surface B-doped ZnO-TCO films on wet-chemically etched glass substrates for thin film solar cells. J. Semicond., 2016, 37(8): 083003. doi: 10.1088/1674-4926/37/8/083003

[5]

K S Urmila, T A Namitha, J Rajani, R R Philip, B Pradeep. Optoelectronic properties and Seebeck coefficient in SnSe thin films. J. Semicond., 2016, 37(9): 093002. doi: 10.1088/1674-4926/37/9/093002

[6]

J.V. Thombare, M.C. Rath, S.H. Han, V.J. Fulari. The influence of monomer concentration on the optical properties of electrochemically synthesized polypyrrole thin films. J. Semicond., 2013, 34(10): 103002. doi: 10.1088/1674-4926/34/10/103002

[7]

S. Benramache, O. Belahssen, A. Guettaf, A. Arif. Correlation between crystallite size-optical gap energy and precursor molarities of ZnO thin films. J. Semicond., 2014, 35(4): 042001. doi: 10.1088/1674-4926/35/4/042001

[8]

Kiran Diwate, Amit Pawbake, Sachin Rondiya, Rupali Kulkarni, Ravi Waykar, Ashok Jadhavar, Avinash Rokade, Adinath Funde, Kakasaheb Mohite, Manish Shinde, Habib Pathan, Rupesh Devan, Sandesh Jadkar. Substrate temperature dependent studies on properties of chemical spray pyrolysis deposited CdS thin films for solar cell applications. J. Semicond., 2017, 38(2): 023001. doi: 10.1088/1674-4926/38/2/023001

[9]

Yao Zhaohui, Chen Tingjin, Xia Chaofeng, Yuan Hairong, Liu Zuming, Liao Hua, Wang Fan. Structural and Optical Properties of CdTe Thin Films on Glass Grown by Hot Wall Vacuum Deposition. J. Semicond., 2006, 27(7): 1236.

[10]

Sonet Kumar Saha, M. Azizar Rahman, M. R. H. Sarkar, M. Shahjahan, M. K. R. Khan. Effect of Co doping on structural, optical, electrical and thermal properties of nanostructured ZnO thin films. J. Semicond., 2015, 36(3): 033004. doi: 10.1088/1674-4926/36/3/033004

[11]

Said Benramache, Okba Belahssen, Abderrazak Guettaf, Ali Arif. Correlation between electrical conductivity-optical band gap energy and precursor molarities ultrasonic spray deposition of ZnO thin films. J. Semicond., 2013, 34(11): 113001. doi: 10.1088/1674-4926/34/11/113001

[12]

Zhang Baoping, Kang Junyong, Yu Jinzhong, Wang Qiming, Segawa Yusaburo. Growth and Optical Properties of ZnO Films and Quantum Wells. J. Semicond., 2006, 27(4): 613.

[13]

Di Xia, Tian Caijuan, Tang Rongzhe, Li Wei, Feng Lianghuan, Zhang Jingquan, Wu Lili, Lei Zhi. Structural and optical properties of Cd0.8Zn0.2S thin films. J. Semicond., 2011, 32(2): 022003. doi: 10.1088/1674-4926/32/2/022003

[14]

S.M. Salaken, E. Farzana, J. Podder. Effect of Fe-doping on the structural and optical properties of ZnO thin films prepared by spray pyrolysis. J. Semicond., 2013, 34(7): 073003. doi: 10.1088/1674-4926/34/7/073003

[15]

Wang Li, Pu Yong, Fang Wenqing, Mo Chunlan, Xiong Chuanbing, Jiang Fengyi. Effect of Surface-Covered Annealing on the Optical Properties of ZnO Films Grown by MOCVD. J. Semicond., 2003, 24(3): 409.

[16]

Liu Wei, Cheng Shuying. Photoelectric properties of ITO thin films deposited by DC magnetron sputtering. J. Semicond., 2011, 32(1): 013002. doi: 10.1088/1674-4926/32/1/013002

[17]

Muhammad Tariq Saeed Chani, Sher Bahadar Khan, Kh. S. Karimov, M. Abid, Abdullah M. Asiri, Kalsoom Akhtar. Synthesis of metal oxide composite nanosheets and their pressure sensing properties. J. Semicond., 2015, 36(2): 023002. doi: 10.1088/1674-4926/36/2/023002

[18]

P Mallika Bramaramba Devi, G. Phaneendra Reddy, K. T. Ramakrishna Reddy. Structural and optical studies on PVA capped SnS films grown by chemical bath deposition for solar cell application. J. Semicond., 2019, 40(5): 052101. doi: 10.1088/1674-4926/40/5/052101

[19]

Fengzhang Zhang, Xiangqi Li, Xiaofeng Wu, Ximei Fan, Chaoliang Zhang. Influence of deposition temperature on CdS thin films by polyol method. J. Semicond., 2014, 35(8): 083003. doi: 10.1088/1674-4926/35/8/083003

[20]

A. R. Babar, S. S. Shinde, A.V. Moholkar, C. H. Bhosale, J. H. Kim, K. Y. Rajpure. Physical properties of sprayed antimony doped tin oxide thin films: Role of thickness. J. Semicond., 2011, 32(5): 053001. doi: 10.1088/1674-4926/32/5/053001

Search

Advanced Search >>

GET CITATION

M. Mousavi, A. Kompany, N. Shahtahmasebi, M.M. Bagheri-Mohagheghi. The effect of solution concentration on the physical and electrochemical properties of vanadium oxide films deposited by spray pyrolysis[J]. J. Semicond., 2013, 34(10): 103001. doi: 10.1088/1674-4926/34/10/103001.

Export: BibTex EndNote

Article Metrics

Article views: 1000 Times PDF downloads: 9 Times Cited by: 0 Times

History

Manuscript received: 06 March 2013 Manuscript revised: 09 April 2013 Online: Published: 01 October 2013

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误