J. Semicond. > Volume 34 > Issue 10 > Article Number: 103002

The influence of monomer concentration on the optical properties of electrochemically synthesized polypyrrole thin films

J.V. Thombare 1, , , M.C. Rath 2, , S.H. Han 3, and V.J. Fulari 1, ,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: Polypyrrole (PPy) thin films were deposited on stainless steel and ITO coated glass substrate at a constant deposition potential of 0.8 V versus saturated calomel electrode (SCE) by using the electrochemical polymerization method. The PPy thin films were deposited at room temperature at various monomer concentrations ranging from 0.1 M to 0.3 M pyrrole. The structural and optical properties of the polypyrrole thin films were investigated using an X-ray diffractometer (XRD), FTIR spectroscopy, scanning electron microscopy (SEM), and ultraviolet-visible (UV-vis) spectroscopy. The XRD results show that polypyrrole thin films have a semi crystalline structure. Higher monomer concentration results in a slight increase of crystallinity. The polypyrrole thin films deposited at higher monomer concentration exhibit high visible absorbance. The refractive indexes of the polypyrrole thin films are found to be in the range of 1 to 1.3 and vary with monomer concentration as well as wavelength. The extinction coefficient decreases slightly with monomer concentration. The electrochemically synthesized polypyrrole thin film shows optical band gap energy of 2.14 eV.

Key words: polypyrroleelectrochemical polymerization methodstructureoptical properties

Abstract: Polypyrrole (PPy) thin films were deposited on stainless steel and ITO coated glass substrate at a constant deposition potential of 0.8 V versus saturated calomel electrode (SCE) by using the electrochemical polymerization method. The PPy thin films were deposited at room temperature at various monomer concentrations ranging from 0.1 M to 0.3 M pyrrole. The structural and optical properties of the polypyrrole thin films were investigated using an X-ray diffractometer (XRD), FTIR spectroscopy, scanning electron microscopy (SEM), and ultraviolet-visible (UV-vis) spectroscopy. The XRD results show that polypyrrole thin films have a semi crystalline structure. Higher monomer concentration results in a slight increase of crystallinity. The polypyrrole thin films deposited at higher monomer concentration exhibit high visible absorbance. The refractive indexes of the polypyrrole thin films are found to be in the range of 1 to 1.3 and vary with monomer concentration as well as wavelength. The extinction coefficient decreases slightly with monomer concentration. The electrochemically synthesized polypyrrole thin film shows optical band gap energy of 2.14 eV.

Key words: polypyrroleelectrochemical polymerization methodstructureoptical properties



References:

[1]

Liang G R, Cui T H, Varahramyan K. Electrical characteristics of diodes fabricated with organic semiconductors[J]. Microelectron Eng, 2003, 65: 279. doi: 10.1016/S0167-9317(02)00901-2

[2]

Lonergan M C. A tunable diode based on an inorganic semiconductor conjugated polymer interface[J]. Science, 1997, 278: 2103. doi: 10.1126/science.278.5346.2103

[3]

Saxena V, Santhanam K S V. Junction properties of Schottky diode with chemically prepared copolymer having hexylthiophene and cyclohexylthiophene units[J]. Curr Appl Phys, 2003, 3: 227. doi: 10.1016/S1567-1739(02)00220-1

[4]

Singh R, Narula A K. Junction properties of aluminum/polypyrrole (polypyrrole derivatives) Schottky diodes[J]. Appl Phys Lett, 1997, 71: 2845. doi: 10.1063/1.120151

[5]

Burroughs J H, Bradley D C, Brown A R. Light-emitting diodes based on conjugated polymers[J]. Nature, 1990, 347: 539. doi: 10.1038/347539a0

[6]

Pandey S S, Misra S C K, Malhotra B D. Some recent studies on metal/polyaniline Schottky devices[J]. J Appl Polym Sci, 1992, 44: 911. doi: 10.1002/app.1992.070440519

[7]

Kudoh Y, Tsuchiya S, Kojima T. An aluminum solid electrolytic capacitor with an electroconducting-polymer electrolyte[J]. Synth Met, 1991, 41: 1133. doi: 10.1016/0379-6779(91)91570-Z

[8]

Rudge A, Davey J, Raistrick I. Conducting polymers as active materials in electrochemical capacitors[J]. J Power Sources, 1994, 47: 89. doi: 10.1016/0378-7753(94)80053-7

[9]

Aydogan S, Saglam M, Turut A. Electrical properties of polypyrrole/p-InP structure[J]. J Polym Sci Pol Phys, 2006, 44: 1572. doi: 10.1002/(ISSN)1099-0488

[10]

Berggren M, Inganas O, Gustafsson G. Light-emitting diodes with variable colours from polymer blends[J]. Nature, 1994, 372: 444. doi: 10.1038/372444a0

[11]

Makris T, Dracopoulos V, Stergiopoulos T. A quasi solid-state dye-sensitized solar cell made of polypyrrole counter electrodes[J]. Electrochim Acta, 2011, 56: 2004. doi: 10.1016/j.electacta.2010.11.076

[12]

Cui C J, Wu G M, Yang H Y. A new high-performance cathode material for rechargeable lithium-ion batteries:polypyrrole/vanadium oxide nanotubes[J]. Electrochim Acta, 2010, 55: 8870. doi: 10.1016/j.electacta.2010.07.087

[13]

Iftikhar F J, Baker P G L, Baleg A M. Modulation of the interfacial electrochemistry of surfactant-functionalised polypyrrole chemical sensor systems[J]. Electrochim Acta, 2011, 56: 5214. doi: 10.1016/j.electacta.2011.03.034

[14]

DaSilva A J C, Nogueira F A R, Tonholo J. Dual-type electrochromic device based on polypyrrole and polythiophene derivatives[J]. Sol Energ Mat Sol C, 2011, 95: 2255. doi: 10.1016/j.solmat.2011.03.032

[15]

Sharma R K, Rastogi A C, Desu S B. Pulse polymerized polypyrrole electrodes for high energy density electrochemical supercapacitor[J]. Electrochem Commun, 2008, 10: 268. doi: 10.1016/j.elecom.2007.12.004

[16]

Wang B, Zhao J, Cui C. Electrochemical synthesis, characterization and electrochromic properties of a copolymer based on 1, 4-bis(2-thienyl)naphthalene and pyrene[J]. Opt Mater, 2012, 34: 1095. doi: 10.1016/j.optmat.2012.01.009

[17]

Yakuphanoglu F, Aydin M E. Effects of polymerization medium on electrical conductivity and optical properties of organic semiconductor-based polypyrrole[J]. Polym Eng Sci, 2007, 47: 1016. doi: 10.1002/(ISSN)1548-2634

[18]

Xu P, Han X, Wang C. Synthesis of electromagnetic functionalized barium ferrite nanoparticles embedded in polypyrrole[J]. J Phys Chem B, 2008, 112: 2775. doi: 10.1021/jp710259v

[19]

Antony M J, Jayakannan M. Amphiphilic azobenzenesulfonic acid anionic surfactant for water-soluble, ordered, and luminescent polypyrrole nanospheres[J]. J Phys Chem B, 2007, 111: 12772.

[20]

Alexander L E. X-ray diffraction methods in polymer science[J]. New York:John Wiley, 1969: 379.

[21]

Cheah K, Forsyth M, Truong V T. An XRD/XPS approach to structural change in conducting Ppy[J]. Synth Met, 1999, 101: 19. doi: 10.1016/S0379-6779(98)00790-5

[22]

Lemon P, Haigh J. The evolution of nodular polypyrrole morphology during aqueous electrolytic deposition:influence of electrolyte gas discharge[J]. Mater Res Bull, 1999, 34: 665. doi: 10.1016/S0025-5408(99)00069-0

[23]

Kubacka D, Krysinski P, Blanchard G J. Toluene-filled polypyrrole microvessels:entrapment and dynamics of encapsulated perylene[J]. J Phys Chem B, 2010, 114: 14890. doi: 10.1021/jp107316u

[24]

Mavinakuli P, Wei S, Wang Q. Polypyrrole/silicon carbide nanocomposites with tunable electrical conductivity[J]. J Phys Chem C, 2010, 114: 3874. doi: 10.1021/jp911766y

[25]

Vasilyeva S V, Vorotyntsev M A, Bezverkhyy I. Synthesis and characterization of palladium nanoparticle/polypyrrole composites[J]. J Phys Chem C, 2008, 112: 19878. doi: 10.1021/jp805423t

[26]

Jiang J, Ai L, Li L. Multifunctional polypyrrole/strontium hexaferrite composite microspheres:preparation, characterization, and properties[J]. J Phys Chem B, 2009, 113: 1376. doi: 10.1021/jp808270n

[27]

Taranekar P, Fan X, Advincula R. Distinct surface morphologies of electropolymerized polymethylsiloxane network polypyrrole and comonomer films[J]. Langmuir, 2002, 18: 7943. doi: 10.1021/la025517y

[28]

Yang C, Liu P. Water dispersibility and temperature dependence of electrical conductivity of conductive polypyrrole nanoparticles doped with fulvic acids[J]. J Chem Eng Data, 2011, 56: 899. doi: 10.1021/je100751n

[29]

Song H K, Palmore G T R. Conductive polypyrrole via enzyme catalysis[J]. J Phys Chem B, 2005, 109: 19278. doi: 10.1021/jp0514978

[30]

Zhou J P, Chai C L, Yang S Y. Photoluminescence behaviors from stoichiometric gadolinium oxide films[J]. J Appl Phys, 2003, 94: 4414. doi: 10.1063/1.1606862

[31]

Chandra S, Annapoorni S, Singh F. Low temperature resistivity study of nanostructured polypyrrole films under electronic excitations[J]. Nucl Instrum Meth B, 2010, 268: 62. doi: 10.1016/j.nimb.2009.09.060

[32]

Erdei G, Berze N, Peter A. Refractive index measurement of cerium-doped LuxY2-xSiO5 single crystal[J]. Opt Mater, 2012, 34: 781. doi: 10.1016/j.optmat.2011.11.006

[33]

Manzani D, Fernandes R G, Messaddeq Y. Thermal, struc-tural and optical properties of new tungsten lead-pyrophosphate glasses[J]. Opt Mater, 2011, 33: 1862. doi: 10.1016/j.optmat.2011.02.041

[34]

Maia L J Q, Fick J, Hernandes A C. Optical properties of amorphous, erbium-doped yttrium alumino-borate thin films[J]. Opt Mater, 2012, 34: 665. doi: 10.1016/j.optmat.2011.09.014

[35]

Rajan G, Gopchandran K G. Engineering of luminescence from Gd2O3:Eu3+ nanophosphors by pulsed laser deposition[J]. Opt Mater, 2009, 32: 121. doi: 10.1016/j.optmat.2009.06.017

[36]

Dahshan A. Optical and other physical characteristics of Ge-Se-Cd thin films[J]. Opt Mater, 2009, 32: 247. doi: 10.1016/j.optmat.2009.07.017

[1]

Liang G R, Cui T H, Varahramyan K. Electrical characteristics of diodes fabricated with organic semiconductors[J]. Microelectron Eng, 2003, 65: 279. doi: 10.1016/S0167-9317(02)00901-2

[2]

Lonergan M C. A tunable diode based on an inorganic semiconductor conjugated polymer interface[J]. Science, 1997, 278: 2103. doi: 10.1126/science.278.5346.2103

[3]

Saxena V, Santhanam K S V. Junction properties of Schottky diode with chemically prepared copolymer having hexylthiophene and cyclohexylthiophene units[J]. Curr Appl Phys, 2003, 3: 227. doi: 10.1016/S1567-1739(02)00220-1

[4]

Singh R, Narula A K. Junction properties of aluminum/polypyrrole (polypyrrole derivatives) Schottky diodes[J]. Appl Phys Lett, 1997, 71: 2845. doi: 10.1063/1.120151

[5]

Burroughs J H, Bradley D C, Brown A R. Light-emitting diodes based on conjugated polymers[J]. Nature, 1990, 347: 539. doi: 10.1038/347539a0

[6]

Pandey S S, Misra S C K, Malhotra B D. Some recent studies on metal/polyaniline Schottky devices[J]. J Appl Polym Sci, 1992, 44: 911. doi: 10.1002/app.1992.070440519

[7]

Kudoh Y, Tsuchiya S, Kojima T. An aluminum solid electrolytic capacitor with an electroconducting-polymer electrolyte[J]. Synth Met, 1991, 41: 1133. doi: 10.1016/0379-6779(91)91570-Z

[8]

Rudge A, Davey J, Raistrick I. Conducting polymers as active materials in electrochemical capacitors[J]. J Power Sources, 1994, 47: 89. doi: 10.1016/0378-7753(94)80053-7

[9]

Aydogan S, Saglam M, Turut A. Electrical properties of polypyrrole/p-InP structure[J]. J Polym Sci Pol Phys, 2006, 44: 1572. doi: 10.1002/(ISSN)1099-0488

[10]

Berggren M, Inganas O, Gustafsson G. Light-emitting diodes with variable colours from polymer blends[J]. Nature, 1994, 372: 444. doi: 10.1038/372444a0

[11]

Makris T, Dracopoulos V, Stergiopoulos T. A quasi solid-state dye-sensitized solar cell made of polypyrrole counter electrodes[J]. Electrochim Acta, 2011, 56: 2004. doi: 10.1016/j.electacta.2010.11.076

[12]

Cui C J, Wu G M, Yang H Y. A new high-performance cathode material for rechargeable lithium-ion batteries:polypyrrole/vanadium oxide nanotubes[J]. Electrochim Acta, 2010, 55: 8870. doi: 10.1016/j.electacta.2010.07.087

[13]

Iftikhar F J, Baker P G L, Baleg A M. Modulation of the interfacial electrochemistry of surfactant-functionalised polypyrrole chemical sensor systems[J]. Electrochim Acta, 2011, 56: 5214. doi: 10.1016/j.electacta.2011.03.034

[14]

DaSilva A J C, Nogueira F A R, Tonholo J. Dual-type electrochromic device based on polypyrrole and polythiophene derivatives[J]. Sol Energ Mat Sol C, 2011, 95: 2255. doi: 10.1016/j.solmat.2011.03.032

[15]

Sharma R K, Rastogi A C, Desu S B. Pulse polymerized polypyrrole electrodes for high energy density electrochemical supercapacitor[J]. Electrochem Commun, 2008, 10: 268. doi: 10.1016/j.elecom.2007.12.004

[16]

Wang B, Zhao J, Cui C. Electrochemical synthesis, characterization and electrochromic properties of a copolymer based on 1, 4-bis(2-thienyl)naphthalene and pyrene[J]. Opt Mater, 2012, 34: 1095. doi: 10.1016/j.optmat.2012.01.009

[17]

Yakuphanoglu F, Aydin M E. Effects of polymerization medium on electrical conductivity and optical properties of organic semiconductor-based polypyrrole[J]. Polym Eng Sci, 2007, 47: 1016. doi: 10.1002/(ISSN)1548-2634

[18]

Xu P, Han X, Wang C. Synthesis of electromagnetic functionalized barium ferrite nanoparticles embedded in polypyrrole[J]. J Phys Chem B, 2008, 112: 2775. doi: 10.1021/jp710259v

[19]

Antony M J, Jayakannan M. Amphiphilic azobenzenesulfonic acid anionic surfactant for water-soluble, ordered, and luminescent polypyrrole nanospheres[J]. J Phys Chem B, 2007, 111: 12772.

[20]

Alexander L E. X-ray diffraction methods in polymer science[J]. New York:John Wiley, 1969: 379.

[21]

Cheah K, Forsyth M, Truong V T. An XRD/XPS approach to structural change in conducting Ppy[J]. Synth Met, 1999, 101: 19. doi: 10.1016/S0379-6779(98)00790-5

[22]

Lemon P, Haigh J. The evolution of nodular polypyrrole morphology during aqueous electrolytic deposition:influence of electrolyte gas discharge[J]. Mater Res Bull, 1999, 34: 665. doi: 10.1016/S0025-5408(99)00069-0

[23]

Kubacka D, Krysinski P, Blanchard G J. Toluene-filled polypyrrole microvessels:entrapment and dynamics of encapsulated perylene[J]. J Phys Chem B, 2010, 114: 14890. doi: 10.1021/jp107316u

[24]

Mavinakuli P, Wei S, Wang Q. Polypyrrole/silicon carbide nanocomposites with tunable electrical conductivity[J]. J Phys Chem C, 2010, 114: 3874. doi: 10.1021/jp911766y

[25]

Vasilyeva S V, Vorotyntsev M A, Bezverkhyy I. Synthesis and characterization of palladium nanoparticle/polypyrrole composites[J]. J Phys Chem C, 2008, 112: 19878. doi: 10.1021/jp805423t

[26]

Jiang J, Ai L, Li L. Multifunctional polypyrrole/strontium hexaferrite composite microspheres:preparation, characterization, and properties[J]. J Phys Chem B, 2009, 113: 1376. doi: 10.1021/jp808270n

[27]

Taranekar P, Fan X, Advincula R. Distinct surface morphologies of electropolymerized polymethylsiloxane network polypyrrole and comonomer films[J]. Langmuir, 2002, 18: 7943. doi: 10.1021/la025517y

[28]

Yang C, Liu P. Water dispersibility and temperature dependence of electrical conductivity of conductive polypyrrole nanoparticles doped with fulvic acids[J]. J Chem Eng Data, 2011, 56: 899. doi: 10.1021/je100751n

[29]

Song H K, Palmore G T R. Conductive polypyrrole via enzyme catalysis[J]. J Phys Chem B, 2005, 109: 19278. doi: 10.1021/jp0514978

[30]

Zhou J P, Chai C L, Yang S Y. Photoluminescence behaviors from stoichiometric gadolinium oxide films[J]. J Appl Phys, 2003, 94: 4414. doi: 10.1063/1.1606862

[31]

Chandra S, Annapoorni S, Singh F. Low temperature resistivity study of nanostructured polypyrrole films under electronic excitations[J]. Nucl Instrum Meth B, 2010, 268: 62. doi: 10.1016/j.nimb.2009.09.060

[32]

Erdei G, Berze N, Peter A. Refractive index measurement of cerium-doped LuxY2-xSiO5 single crystal[J]. Opt Mater, 2012, 34: 781. doi: 10.1016/j.optmat.2011.11.006

[33]

Manzani D, Fernandes R G, Messaddeq Y. Thermal, struc-tural and optical properties of new tungsten lead-pyrophosphate glasses[J]. Opt Mater, 2011, 33: 1862. doi: 10.1016/j.optmat.2011.02.041

[34]

Maia L J Q, Fick J, Hernandes A C. Optical properties of amorphous, erbium-doped yttrium alumino-borate thin films[J]. Opt Mater, 2012, 34: 665. doi: 10.1016/j.optmat.2011.09.014

[35]

Rajan G, Gopchandran K G. Engineering of luminescence from Gd2O3:Eu3+ nanophosphors by pulsed laser deposition[J]. Opt Mater, 2009, 32: 121. doi: 10.1016/j.optmat.2009.06.017

[36]

Dahshan A. Optical and other physical characteristics of Ge-Se-Cd thin films[J]. Opt Mater, 2009, 32: 247. doi: 10.1016/j.optmat.2009.07.017

[1]

V. M. Nikale, S. S. Shinde, C. H. Bhosale, K.Y. Rajpure. Physical properties of spray deposited CdTe thin films: PEC performance. J. Semicond., 2011, 32(3): 033001. doi: 10.1088/1674-4926/32/3/033001

[2]

J.V. Thombare, S.K. Shinde, G.M. Lohar, U.M. Chougale, S.S. Dhasade, H.D. Dhaygude, B.P. Relekar, V.J. Fulari. Optical properties of electrochemically synthesized polypyrrole thin films: the electrolyte effect. J. Semicond., 2014, 35(6): 063001. doi: 10.1088/1674-4926/35/6/063001

[3]

Ren Li, Zhang Xuefeng, Wang Lixin, Zhang Fuqiang. Conductivity and Conducting Mechanism of Polypyrrole via Chemical Oxidative Polymerization. J. Semicond., 2007, 28(9): 1396.

[4]

J. V. Thombare, M. C. Rath, S. H. Han, V. J. Fulari. The effects of electron irradiation on the optical properties of the organic semiconductor polypyrrole. J. Semicond., 2013, 34(9): 093001. doi: 10.1088/1674-4926/34/9/093001

[5]

Zheng Yongping, Chen Zhigao, Lu Yu, Wu Qingyun, Weng Zhenzhen, Huang Zhigao. Influence of Be-Doping on Electronic Structure and Optical Properties of ZnO. J. Semicond., 2008, 29(12): 2316.

[6]

Yan Wanjun, Xie Quan. First Principle Calculation of the Electronic Structure and Optical Properties of Impurity-Doped β-FeSi2 Semiconductors. J. Semicond., 2008, 29(6): 1141.

[7]

Zhao Zongyan, Liu Qingju, Zhu Zhongqi, Zhang Jin. First-Principles Calculation of Electronic Structure and Optical Properties of Anatase TiO2. J. Semicond., 2007, 28(10): 1555.

[8]

Zhuomao Zhu, Baoan Bian, Haifeng Shi. Effect of N and Fe codoping on the electronic structure and optical properties of TiO2 from first-principles study. J. Semicond., 2015, 36(10): 102003. doi: 10.1088/1674-4926/36/10/102003

[9]

M. Mousavi, A. Kompany, N. Shahtahmasebi, M.M. Bagheri-Mohagheghi. The effect of solution concentration on the physical and electrochemical properties of vanadium oxide films deposited by spray pyrolysis. J. Semicond., 2013, 34(10): 103001. doi: 10.1088/1674-4926/34/10/103001

[10]

Li Jun, Yan Jinliang, Sun Xueqing, Li Kewei, Yang Chunxiu. Influence of Ag Layer Thickness on the Properties of ZnO/Ag/ZnO Films. J. Semicond., 2007, 28(9): 1402.

[11]

Yang Fengfan, Fang Liang, Li Li, Fu Guangzong, Zhang Yong, Li Mingwei, Yu Jiangtao. Structure and Seebeck Effect for Transparent and Conductive CdIn2O4 Thin Film. J. Semicond., 2007, 28(S1): 67.

[12]

Sandong Guo . First-principles calculations of Mg2X (X = Si, Ge, Sn) semiconductors with the calcium fluorite structure. J. Semicond., 2015, 36(5): 053002. doi: 10.1088/1674-4926/36/5/053002

[13]

Peijiang Niu, Jinliang Yan, Delan Meng. The effects of N-doping and oxygen vacancy on the electronic structure and conductivity of PbTiO3. J. Semicond., 2015, 36(4): 043004. doi: 10.1088/1674-4926/36/4/043004

[14]

Fengzhang Zhang, Xiangqi Li, Xiaofeng Wu, Ximei Fan, Chaoliang Zhang. Influence of deposition temperature on CdS thin films by polyol method. J. Semicond., 2014, 35(8): 083003. doi: 10.1088/1674-4926/35/8/083003

[15]

F. A. Mahmoud, Ninet Ahmed. Elaboration of ZnO nanowires by solution based method, characterization and solar cell applications. J. Semicond., 2018, 39(9): 093002. doi: 10.1088/1674-4926/39/9/093002

[16]

S. S. Dhasade, S. H. Han, V. J. Fulari. A nanostructured copper telluride thin film grown at room temperature by an electrodeposition method. J. Semicond., 2012, 33(9): 093002. doi: 10.1088/1674-4926/33/9/093002

[17]

Shengnan Zhang, Xiaozheng Lian, Yanchao Ma, Weidan Liu, Yingwu Zhang, Yongkuan Xu, Hongjuan Cheng. Growth and characterization of 2-inch high quality β-Ga2O3 single crystals grown by EFG method. J. Semicond., 2018, 39(8): 083003. doi: 10.1088/1674-4926/39/8/083003

[18]

Wanjun Yan, Chunhong Zhang, Zhongzheng Zhang, Quan Xie, Benhua Guo, Shiyun Zhou. The optical-electrical properties of doped β-FeSi2. J. Semicond., 2013, 34(10): 103003. doi: 10.1088/1674-4926/34/10/103003

[19]

Jiuxu Song, Yintang Yang, Ping Wang, Lixin Guo, Zhiyong Zhang. Electronic structures and optical properties of a SiC nanotube with vacancy defects. J. Semicond., 2013, 34(2): 022001. doi: 10.1088/1674-4926/34/2/022001

[20]

Yao Zhaohui, Chen Tingjin, Xia Chaofeng, Yuan Hairong, Liu Zuming, Liao Hua, Wang Fan. Structural and Optical Properties of CdTe Thin Films on Glass Grown by Hot Wall Vacuum Deposition. J. Semicond., 2006, 27(7): 1236.

Search

Advanced Search >>

GET CITATION

J.V. Thombare, M.C. Rath, S.H. Han, V.J. Fulari. The influence of monomer concentration on the optical properties of electrochemically synthesized polypyrrole thin films[J]. J. Semicond., 2013, 34(10): 103002. doi: 10.1088/1674-4926/34/10/103002.

Export: BibTex EndNote

Article Metrics

Article views: 1024 Times PDF downloads: 10 Times Cited by: 0 Times

History

Manuscript received: 19 April 2013 Manuscript revised: 20 May 2013 Online: Published: 01 October 2013

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误