J. Semicond. > Volume 34 > Issue 10 > Article Number: 103003

The optical-electrical properties of doped β-FeSi2

Wanjun Yan 1, 2, , Chunhong Zhang 1, , Zhongzheng Zhang 1, , Quan Xie 2, , Benhua Guo 1, and Shiyun Zhou 1, ,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: By using the pseudo-potential plane-wave method of first principles based on the density function theory, the geometrical, electronic structures and optical properties of FeSi1.875M0.125 (M=B, N, Al, P) were calculated and analyzed. The calculated structural parameters depend strongly on the kinds of dopants and sites. The total energy calculations for substitution of dopants at the SiI and the SiⅡ sites revealed that Al and P prefer the SiI sites, whereas B and N prefer the SiⅡ sites. The calculations predict that B-and Al-doped β-FeSi2 show p-type conduction, while N-and P-doped show n-type. Optical property calculations show that N-doping has little influence on the complex dielectric function of β -FeSi2; B-, N-, Al-and P-doping can enhance the electronic transition, refractive index, and reflection effect in the low-energy range, and weaken the reflection effect at the max peak of reflectivity. These results can offer theoretical guidance for the design and application of optoelectronic material β -FeSi2.

Key words: doped β-FeSi2geometrical structureelectronic structuresoptical propertiesfirst principles

Abstract: By using the pseudo-potential plane-wave method of first principles based on the density function theory, the geometrical, electronic structures and optical properties of FeSi1.875M0.125 (M=B, N, Al, P) were calculated and analyzed. The calculated structural parameters depend strongly on the kinds of dopants and sites. The total energy calculations for substitution of dopants at the SiI and the SiⅡ sites revealed that Al and P prefer the SiI sites, whereas B and N prefer the SiⅡ sites. The calculations predict that B-and Al-doped β-FeSi2 show p-type conduction, while N-and P-doped show n-type. Optical property calculations show that N-doping has little influence on the complex dielectric function of β -FeSi2; B-, N-, Al-and P-doping can enhance the electronic transition, refractive index, and reflection effect in the low-energy range, and weaken the reflection effect at the max peak of reflectivity. These results can offer theoretical guidance for the design and application of optoelectronic material β -FeSi2.

Key words: doped β-FeSi2geometrical structureelectronic structuresoptical propertiesfirst principles



References:

[1]

Lange H. Electronic properties of semiconducting silicides[J]. Phys Status Solidi B, 1997, 201(1): 3. doi: 10.1002/(ISSN)1521-3951

[2]

Bost M, Mahan J. Optical properties of semiconducting iron disilicide thin films[J]. J Appl Phys, 1985, 58(7): 2696. doi: 10.1063/1.335906

[3]

Leong D, Harry M, Reeson K. A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1.5μm[J]. Nature, 1997, 387(6636): 686.

[4]

Maeda Y. Semiconducting β -FeSi2 towards optoelectronics and photonics[J]. Thin Solid Films, 2007, 515(22): 8118. doi: 10.1016/j.tsf.2007.02.023

[5]

Arushanov E, Lisunov K, Vinzelberg H. Hopping conductivity and spectrum of localized carriers in β -FeSi2:Mn[J]. Moldavian Journal of the Physical Sciences, 2009, 8(N1): 49.

[6]

Arushanov E, Schön J, Lange H. Transport properties of Cr-doped β -FeSi2[J]. Thin Solid Films, 2001, 381(2): 282. doi: 10.1016/S0040-6090(00)01757-0

[7]

Maeda Y, Terai Y, Itakura M. Enhancement of photoresponse properties of β -FeSi2/Si heterojunctions by Al doping[J]. Opt Mater, 2005, 27(5): 920. doi: 10.1016/j.optmat.2004.08.036

[8]

Terai Y, Maeda Y. Photoluminescence enhancement in impurity doped β -FeSi2[J]. Opt Mater, 2005, 27(5): 925. doi: 10.1016/j.optmat.2004.08.037

[9]

Tani J, Kido H. Electrical properties of Co-doped and Ni-doped β -FeSi2[J]. J Appl Phys, 1998, 84(3): 1408. doi: 10.1063/1.368174

[10]

Tani J, Kido H. Thermoelectric properties of Pt-doped β -FeSi2[J]. J Appl Phys, 2000, 88(10): 5810. doi: 10.1063/1.1322597

[11]

Van Ek J, Turchi P, Sterne P. Fe, Ru, and Os disilicides:electronic structure of ordered compounds[J]. Phys Rev B, 1996, 54(11): 7897. doi: 10.1103/PhysRevB.54.7897

[12]

Tani J I, Kido H. Geometrical and electronic structures of β -FeSi1.875X0.125 (X=B, N, Al or P)[J]. Jpn J Appl Phys, Part 1, 2002, 41(11A): 6426.

[13]

Tani J I, Kido H. First principle calculation of the geometrical and electronic structure of impurity-doped β -FeSi2 semiconductors[J]. J Solid State Chem, 2002, 163(1): 248. doi: 10.1006/jssc.2001.9399

[14]

Yan W J, Xie Q. First principle calculation of the electronic structure and optical properties of impurity-doped β -FeSi2 semiconductors[J]. Journal of Semiconductors, 2008, 29(6): 1141.

[15]

Yan W J, Zhou S Y, Xie Q. First principle study of electronic structure and optical properties for Co-doped β -FeSi2[J]. Acta Optica Sinica, 2011, 31(6): 165.

[16]

Dusausoy Y, Protas J, Wandji R. Structure crystalline du disiliciure de fer, FeSi2β[J]. Acta Crystallographica Section B:Structural Crystallography and Crystal Chemistry, 1971, 27(6): 1209. doi: 10.1107/S0567740871003765

[17]

Segall M, Lindan P J D, Probert M. First-principles simulation:ideas, illustrations and the CASTEP code[J]. J Phys:Condensed Matter, 2002, 14(11): 2717. doi: 10.1088/0953-8984/14/11/301

[18]

Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865. doi: 10.1103/PhysRevLett.77.3865

[19]

Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Phys Rev B, 1976, 13(12): 5188. doi: 10.1103/PhysRevB.13.5188

[20]

Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Phys Rev B, 1990, 41(11): 7892. doi: 10.1103/PhysRevB.41.7892

[21]

Yan W J, Xie Q, Zhang J M. Theoretical study of interband optical transitions in semiconducting iron disilicide β -FeSi2[J]. Chinese Journal of Semiconductors, 2007, 28(9): 1381.

[22]

Shen X C. Spectrum and optical property of semiconductor. Beijing:Science Press, 1992(in Chinese)

[1]

Lange H. Electronic properties of semiconducting silicides[J]. Phys Status Solidi B, 1997, 201(1): 3. doi: 10.1002/(ISSN)1521-3951

[2]

Bost M, Mahan J. Optical properties of semiconducting iron disilicide thin films[J]. J Appl Phys, 1985, 58(7): 2696. doi: 10.1063/1.335906

[3]

Leong D, Harry M, Reeson K. A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1.5μm[J]. Nature, 1997, 387(6636): 686.

[4]

Maeda Y. Semiconducting β -FeSi2 towards optoelectronics and photonics[J]. Thin Solid Films, 2007, 515(22): 8118. doi: 10.1016/j.tsf.2007.02.023

[5]

Arushanov E, Lisunov K, Vinzelberg H. Hopping conductivity and spectrum of localized carriers in β -FeSi2:Mn[J]. Moldavian Journal of the Physical Sciences, 2009, 8(N1): 49.

[6]

Arushanov E, Schön J, Lange H. Transport properties of Cr-doped β -FeSi2[J]. Thin Solid Films, 2001, 381(2): 282. doi: 10.1016/S0040-6090(00)01757-0

[7]

Maeda Y, Terai Y, Itakura M. Enhancement of photoresponse properties of β -FeSi2/Si heterojunctions by Al doping[J]. Opt Mater, 2005, 27(5): 920. doi: 10.1016/j.optmat.2004.08.036

[8]

Terai Y, Maeda Y. Photoluminescence enhancement in impurity doped β -FeSi2[J]. Opt Mater, 2005, 27(5): 925. doi: 10.1016/j.optmat.2004.08.037

[9]

Tani J, Kido H. Electrical properties of Co-doped and Ni-doped β -FeSi2[J]. J Appl Phys, 1998, 84(3): 1408. doi: 10.1063/1.368174

[10]

Tani J, Kido H. Thermoelectric properties of Pt-doped β -FeSi2[J]. J Appl Phys, 2000, 88(10): 5810. doi: 10.1063/1.1322597

[11]

Van Ek J, Turchi P, Sterne P. Fe, Ru, and Os disilicides:electronic structure of ordered compounds[J]. Phys Rev B, 1996, 54(11): 7897. doi: 10.1103/PhysRevB.54.7897

[12]

Tani J I, Kido H. Geometrical and electronic structures of β -FeSi1.875X0.125 (X=B, N, Al or P)[J]. Jpn J Appl Phys, Part 1, 2002, 41(11A): 6426.

[13]

Tani J I, Kido H. First principle calculation of the geometrical and electronic structure of impurity-doped β -FeSi2 semiconductors[J]. J Solid State Chem, 2002, 163(1): 248. doi: 10.1006/jssc.2001.9399

[14]

Yan W J, Xie Q. First principle calculation of the electronic structure and optical properties of impurity-doped β -FeSi2 semiconductors[J]. Journal of Semiconductors, 2008, 29(6): 1141.

[15]

Yan W J, Zhou S Y, Xie Q. First principle study of electronic structure and optical properties for Co-doped β -FeSi2[J]. Acta Optica Sinica, 2011, 31(6): 165.

[16]

Dusausoy Y, Protas J, Wandji R. Structure crystalline du disiliciure de fer, FeSi2β[J]. Acta Crystallographica Section B:Structural Crystallography and Crystal Chemistry, 1971, 27(6): 1209. doi: 10.1107/S0567740871003765

[17]

Segall M, Lindan P J D, Probert M. First-principles simulation:ideas, illustrations and the CASTEP code[J]. J Phys:Condensed Matter, 2002, 14(11): 2717. doi: 10.1088/0953-8984/14/11/301

[18]

Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865. doi: 10.1103/PhysRevLett.77.3865

[19]

Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Phys Rev B, 1976, 13(12): 5188. doi: 10.1103/PhysRevB.13.5188

[20]

Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Phys Rev B, 1990, 41(11): 7892. doi: 10.1103/PhysRevB.41.7892

[21]

Yan W J, Xie Q, Zhang J M. Theoretical study of interband optical transitions in semiconducting iron disilicide β -FeSi2[J]. Chinese Journal of Semiconductors, 2007, 28(9): 1381.

[22]

Shen X C. Spectrum and optical property of semiconductor. Beijing:Science Press, 1992(in Chinese)

[1]

Yan Wanjun, Xie Quan. First Principle Calculation of the Electronic Structure and Optical Properties of Impurity-Doped β-FeSi2 Semiconductors. J. Semicond., 2008, 29(6): 1141.

[2]

Zuo Chunying, Wen Jing, Zhong Cheng. First-principles study of the electronic structures and optical properties of C–F–Be doped wurtzite ZnO. J. Semicond., 2012, 33(7): 072001. doi: 10.1088/1674-4926/33/7/072001

[3]

Guoping Luo, Yingmei Bian, Ruifeng Wu, Guoxia Lai, Xiangfu Xu, Weiwei Zhang, Xingyuan Chen. First principles study of the electronic structure and photovoltaic properties of β-CuGaO2 with MBJ + U approach. J. Semicond., 2020, 41(10): 102102. doi: 10.1088/1674-4926/41/10/102102

[4]

Zheng Yongping, Chen Zhigao, Lu Yu, Wu Qingyun, Weng Zhenzhen, Huang Zhigao. Influence of Be-Doping on Electronic Structure and Optical Properties of ZnO. J. Semicond., 2008, 29(12): 2316.

[5]

Yingce Yan, Qi Wang, Huifang Ma. First principles calculations of electronic and optical properties of GaN1-xBix alloys. J. Semicond., 2014, 35(12): 122002. doi: 10.1088/1674-4926/35/12/122002

[6]

Zhao Zongyan, Liu Qingju, Zhu Zhongqi, Zhang Jin. First-Principles Calculation of Electronic Structure and Optical Properties of Anatase TiO2. J. Semicond., 2007, 28(10): 1555.

[7]

Zhuomao Zhu, Baoan Bian, Haifeng Shi. Effect of N and Fe codoping on the electronic structure and optical properties of TiO2 from first-principles study. J. Semicond., 2015, 36(10): 102003. doi: 10.1088/1674-4926/36/10/102003

[8]

Yun Jiangni, Zhang Zhiyong, Deng Zhouhu, Zhang Fuchun. First-Principle Calculation of the Electronic Structure of Sb-Doped SrTiO3. J. Semicond., 2006, 27(9): 1537.

[9]

Jiuxu Song, Yintang Yang, Ping Wang, Lixin Guo, Zhiyong Zhang. Electronic structures and optical properties of a SiC nanotube with vacancy defects. J. Semicond., 2013, 34(2): 022001. doi: 10.1088/1674-4926/34/2/022001

[10]

Azeem Nabi, Zarmeena Akhtar, Tahir Iqbal, Atif Ali, Arshad Javid. The electronic and magnetic properties of wurtzite Mn:CdS, Cr:CdS and Mn:Cr:CdS: first principles calculations. J. Semicond., 2017, 38(7): 073001. doi: 10.1088/1674-4926/38/7/073001

[11]

Wan Qixin, Xiong Zhihua, Rao Jianping, Dai Jiangnan, Le Shuping, Wang Guping, Jiang Fengyi. First-Principles Calculation of ZnO Doped with Ag. J. Semicond., 2007, 28(5): 696.

[12]

Zongyan Zhao, Xiang Zhao. Electronic, optical, and mechanical properties of Cu2ZnSnS4 with four crystal structures. J. Semicond., 2015, 36(8): 083004. doi: 10.1088/1674-4926/36/8/083004

[13]

Sandong Guo . First-principles calculations of Mg2X (X = Si, Ge, Sn) semiconductors with the calcium fluorite structure. J. Semicond., 2015, 36(5): 053002. doi: 10.1088/1674-4926/36/5/053002

[14]

Qiang Gao, Hasan Sahin, Jun Kang. Strain tunable band structure of a new 2D carbon allotrope C568. J. Semicond., 2020, 41(8): 082005. doi: 10.1088/1674-4926/41/8/082005

[15]

Zongyan Zhao, Dacheng Zhou, Juan Yi. Analysis of the electronic structures of 3d transition metals doped CuGaS2 based on DFT calculations. J. Semicond., 2014, 35(1): 013002. doi: 10.1088/1674-4926/35/1/013002

[16]

Yinnü Zhao, Jinliang Yan. First-principles study of n-type tin/fluorine co-doped beta-gallium oxides. J. Semicond., 2015, 36(8): 082004. doi: 10.1088/1674-4926/36/8/082004

[17]

Guili Liu, Yan Jiang, Yuanyuan Song, Shuang Zhou, Tianshuang Wang. Influence of tension-twisting deformations and defects on optical and electrical properties of B, N doped carbon nanotube superlattices. J. Semicond., 2016, 37(6): 063004. doi: 10.1088/1674-4926/37/6/063004

[18]

Yan Wanjun, Xie Quan, Zhang Jinmin, Xiao Qingquan, Liang Yan, Zeng Wuxian. Interband Optical Transitions in Semiconducting Iron Disilicide β-FeSi2. J. Semicond., 2007, 28(9): 1381.

[19]

Peijiang Niu, Jinliang Yan, Delan Meng. The effects of N-doping and oxygen vacancy on the electronic structure and conductivity of PbTiO3. J. Semicond., 2015, 36(4): 043004. doi: 10.1088/1674-4926/36/4/043004

[20]

Xingyi Tan, Qiang Li, Yongdan Zhu. First-principles study of p-type ZnO by S-Na co-doping. J. Semicond., 2017, 38(8): 083001. doi: 10.1088/1674-4926/38/8/083001

Search

Advanced Search >>

GET CITATION

W J Yan, C H Zhang, Z Z Zhang, Q Xie, B H Guo, S Y Zhou. The optical-electrical properties of doped β-FeSi2[J]. J. Semicond., 2013, 34(10): 103003. doi: 10.1088/1674-4926/34/10/103003.

Export: BibTex EndNote

Article Metrics

Article views: 986 Times PDF downloads: 7 Times Cited by: 0 Times

History

Manuscript received: 08 March 2013 Manuscript revised: Online: Published: 01 October 2013

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误