J. Semicond. > Volume 34 > Issue 11 > Article Number: 114003

RF and microwave characteristics of a 10 nm thick InGaN-channel gate recessed HEMT

T. R. Lenka , , G. N. Dash and A. K. Panda

+ Author Affilications + Find other works by these authors

PDF

Abstract: A new depletion-mode gate recessed AlGaN/InGaN/GaN-high electron mobility transistor (HEMT) with 10 nm thickness of InGaN-channel is proposed. A growth of AlGaN over GaN leads to the formation of two-dimensional electron gas (2DEG) at the heterointerface. High 2DEG density (ns) is achieved at the heterointerface due to a strain induced piezoelectric effect between AlGaN and GaN layers. The electrons are confined in the InGaN-channel without spilling over into the buffer layer, which also reduces the buffer leakage current. From the input transfer characteristics the threshold voltage is obtained as -4.5 V and the device conducts a current of 2 A/mm at a drain voltage of 10 V. The device also shows a maximum output current density of 1.8 A/mm at Vds of 3 V. The microwave characteristics like transconductance, cut-off frequency, max frequency of oscillation and Mason's Unilateral Gain of the device are studied by AC small-signal analysis using a two-port network. The stability and power performance of the device are analyzed by the Smith chart and polar plots respectively. To our knowledge this proposed InGaN-channel HEMT structure is the first of its kind.

Key words: 2DEGHEMTInGaNmicrowave

Abstract: A new depletion-mode gate recessed AlGaN/InGaN/GaN-high electron mobility transistor (HEMT) with 10 nm thickness of InGaN-channel is proposed. A growth of AlGaN over GaN leads to the formation of two-dimensional electron gas (2DEG) at the heterointerface. High 2DEG density (ns) is achieved at the heterointerface due to a strain induced piezoelectric effect between AlGaN and GaN layers. The electrons are confined in the InGaN-channel without spilling over into the buffer layer, which also reduces the buffer leakage current. From the input transfer characteristics the threshold voltage is obtained as -4.5 V and the device conducts a current of 2 A/mm at a drain voltage of 10 V. The device also shows a maximum output current density of 1.8 A/mm at Vds of 3 V. The microwave characteristics like transconductance, cut-off frequency, max frequency of oscillation and Mason's Unilateral Gain of the device are studied by AC small-signal analysis using a two-port network. The stability and power performance of the device are analyzed by the Smith chart and polar plots respectively. To our knowledge this proposed InGaN-channel HEMT structure is the first of its kind.

Key words: 2DEGHEMTInGaNmicrowave



References:

[1]

Lenka T R, Panda A K. Role of nanoscale AlN and InN for the microwave characteristics of AlGaN/(Al, In)N/GaN-based HEMT[J]. Semiconductors, 2011, 45(9): 1211. doi: 10.1134/S1063782611090156

[2]

Lenka T R, Panda A K. Characteristics study of 2DEG transport properties of AlGaN/GaN and AlGaAs/GaAs-based HEMT[J]. Semiconductors, 2011, 45(5): 660.

[3]

Lenka T R, Panda A K. Self-consistent subband calculations of AlxGa1-xN/(AlN)/GaN-based high electron mobility transistor[J]. Adv Mater Research, 2011, 159: 342.

[4]

Ibbetson J P, Fini P T, Ness K D. Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors[J]. Appl Phys Lett, 2000, 77(2): 250. doi: 10.1063/1.126940

[5]

Wang R, Li G, Karbasian G. InGaN channel high-electron mobility transistors with InAlGaN barrier and fT/fmax of 260/220 GHz[J]. Appl Phys Express, 2013, 6: 016503. doi: 10.7567/APEX.6.016503

[6]

Simin G, Hu X, Tarakji A. AlGaN/InGaN/GaN double heterostructure field effect transistor[J]. Jpn J Phys, 2001, 40: L1142. doi: 10.1143/JJAP.40.L1142

[7]

Liu J, Zhou Y, Zhu J. AlGaN/GaN/InGaN/GaN DH-HEMTs with an InGaN notch for enhanced carrier confinement[J]. IEEE Electron Device Lett, 2006, 27(1): 10. doi: 10.1109/LED.2005.861027

[8]

Kim B H, Park S H, Lee J H. Effect of In composition on two-dimensional electron gas in wurtzite AlGaN/InGaN heterostructures[J]. Chin Phys Lett, 2010, 27(11): 118501. doi: 10.1088/0256-307X/27/11/118501

[9]

Zhang H, Miller E J, Yu E T. Measurement of polarization charge and conduction-band offset at InxGa1-xN/GaN heterojunction interfaces[J]. Appl Phys Lett, 2004, 84(23): 4644. doi: 10.1063/1.1759388

[10]

Song J, Xu F, Huang C. Different temperature dependence of carrier transport properties between AlxGa1-xN/InyGa1-yN/GaN and AlxGa1-xN/GaN heterostructures[J]. Chin Phys B, 2011, 20(5): 057305. doi: 10.1088/1674-1056/20/5/057305

[11]

Tang J, Wang X, Chen T. AlGaN/AlN/GaN/InGaN/GaN DH-HEMTs with improved mobility grown by MOCVD[J]. IEEE 9th International Conference on Solid-State and Integrated-Circuit Technology, 2008: 1114.

[12]

Lan G, Xu Y, Chen Y. High frequency noise performance of AlGaN/InGaN/GaN HEMTs with AlN interlayer[J]. IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT), 2012: 1.

[13]

Chiang C Y, Hsu H T, Chang E Y. Effect of field plate on the RF performance of AlGaN/GaN HEMT devices[J]. Physics Procedia, 2012, 25: 86. doi: 10.1016/j.phpro.2012.03.054

[14]

Okamoto N, Hoshino K, Hara N. MOCVD-grown InGaN-channel HEMT structures with electron mobility of over 1000 cm2/(V·s)[J]. J Cryst Growth, 2004, 272(1-4): 278. doi: 10.1016/j.jcrysgro.2004.08.071

[15]

Liu G G, Wei K. AlGaN/GaN HEMT with 200 GHz fmax on sapphire with InGaN back-barrier[J]. Journal of Infrared Millim Waves, 2011, 30(4): 289.

[16]

Lanford W, Kumar V, Schwindt R. AlGaN/InGaN HEMTs for RF current collapse suppression[J]. Electron Lett, 2004, 40(12): 771. doi: 10.1049/el:20040398

[1]

Lenka T R, Panda A K. Role of nanoscale AlN and InN for the microwave characteristics of AlGaN/(Al, In)N/GaN-based HEMT[J]. Semiconductors, 2011, 45(9): 1211. doi: 10.1134/S1063782611090156

[2]

Lenka T R, Panda A K. Characteristics study of 2DEG transport properties of AlGaN/GaN and AlGaAs/GaAs-based HEMT[J]. Semiconductors, 2011, 45(5): 660.

[3]

Lenka T R, Panda A K. Self-consistent subband calculations of AlxGa1-xN/(AlN)/GaN-based high electron mobility transistor[J]. Adv Mater Research, 2011, 159: 342.

[4]

Ibbetson J P, Fini P T, Ness K D. Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors[J]. Appl Phys Lett, 2000, 77(2): 250. doi: 10.1063/1.126940

[5]

Wang R, Li G, Karbasian G. InGaN channel high-electron mobility transistors with InAlGaN barrier and fT/fmax of 260/220 GHz[J]. Appl Phys Express, 2013, 6: 016503. doi: 10.7567/APEX.6.016503

[6]

Simin G, Hu X, Tarakji A. AlGaN/InGaN/GaN double heterostructure field effect transistor[J]. Jpn J Phys, 2001, 40: L1142. doi: 10.1143/JJAP.40.L1142

[7]

Liu J, Zhou Y, Zhu J. AlGaN/GaN/InGaN/GaN DH-HEMTs with an InGaN notch for enhanced carrier confinement[J]. IEEE Electron Device Lett, 2006, 27(1): 10. doi: 10.1109/LED.2005.861027

[8]

Kim B H, Park S H, Lee J H. Effect of In composition on two-dimensional electron gas in wurtzite AlGaN/InGaN heterostructures[J]. Chin Phys Lett, 2010, 27(11): 118501. doi: 10.1088/0256-307X/27/11/118501

[9]

Zhang H, Miller E J, Yu E T. Measurement of polarization charge and conduction-band offset at InxGa1-xN/GaN heterojunction interfaces[J]. Appl Phys Lett, 2004, 84(23): 4644. doi: 10.1063/1.1759388

[10]

Song J, Xu F, Huang C. Different temperature dependence of carrier transport properties between AlxGa1-xN/InyGa1-yN/GaN and AlxGa1-xN/GaN heterostructures[J]. Chin Phys B, 2011, 20(5): 057305. doi: 10.1088/1674-1056/20/5/057305

[11]

Tang J, Wang X, Chen T. AlGaN/AlN/GaN/InGaN/GaN DH-HEMTs with improved mobility grown by MOCVD[J]. IEEE 9th International Conference on Solid-State and Integrated-Circuit Technology, 2008: 1114.

[12]

Lan G, Xu Y, Chen Y. High frequency noise performance of AlGaN/InGaN/GaN HEMTs with AlN interlayer[J]. IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT), 2012: 1.

[13]

Chiang C Y, Hsu H T, Chang E Y. Effect of field plate on the RF performance of AlGaN/GaN HEMT devices[J]. Physics Procedia, 2012, 25: 86. doi: 10.1016/j.phpro.2012.03.054

[14]

Okamoto N, Hoshino K, Hara N. MOCVD-grown InGaN-channel HEMT structures with electron mobility of over 1000 cm2/(V·s)[J]. J Cryst Growth, 2004, 272(1-4): 278. doi: 10.1016/j.jcrysgro.2004.08.071

[15]

Liu G G, Wei K. AlGaN/GaN HEMT with 200 GHz fmax on sapphire with InGaN back-barrier[J]. Journal of Infrared Millim Waves, 2011, 30(4): 289.

[16]

Lanford W, Kumar V, Schwindt R. AlGaN/InGaN HEMTs for RF current collapse suppression[J]. Electron Lett, 2004, 40(12): 771. doi: 10.1049/el:20040398

[1]

Zeng Qingming, Li Xianjie, Zhou Zhou, Wang Yong, Wang Xiaoliang. Investigation of Undoped AlGaN/GaN Microwave Power HEMT. J. Semicond., 2005, 26(S1): 151.

[2]

Godwin Raj, Hemant Pardeshi, Sudhansu Kumar Pati, N Mohankumar, Chandan Kumar Sarkar. A 2DEG charge density based drain current model for various Al and In molefraction mobility dependent nano-scale AlInGaN/AlN/GaN HEMT devices. J. Semicond., 2013, 34(4): 044002. doi: 10.1088/1674-4926/34/4/044002

[3]

Wen Bo, Zhou Jianjun, Jiang Ruolian, Xie Zili, Chen Dunjun, Ji Xiaoli, Han Ping, Zhang Rong, Zheng Youdou. Theoretical Calculation of Conversion Efficiency of InGaN Solar Cells. J. Semicond., 2007, 28(9): 1392.

[4]

Wang Lili, Wang Hui, Sun Xian, Wang Hai, Zhu Jianjun, Yang Hui, Liang Junwu. Influence of Temperature on MOCVD Growth of InGaN. J. Semicond., 2007, 28(S1): 257.

[5]

Wen Bo, Jiang Ruolian, Liu Chengxiang, Xie Zili, Zhou Jianjun, Han Ping, Zhang Rong, Zheng Youdou. Influence of Thermal Annealing on Properties of InGaN Films. J. Semicond., 2006, 27(S1): 92.

[6]

Bi Yang, Wang Xiaoliang, Xiao Hongling, Wang Cuimei, Yang Cuibai, Peng Enchao, Lin Defeng, Feng Chun, Jiang Lijuan. Simulation of electrical properties of InxAl1-xN/AlN/GaN high electron mobility transistor structure. J. Semicond., 2011, 32(8): 083003. doi: 10.1088/1674-4926/32/8/083003

[7]

Liang Huilai, Guo Weilian, Song Ruiliang, Qi Haitao, Zhang Shilin, Hu Liuchang, Li Jianheng, Mao Luhong, Shang Yuehui, Feng Zhen, Tian Guoping, Li Yali. Design and Fabrication of Resonant Tunneling Transistor with RTD/HEMT in Series Structure. J. Semicond., 2007, 28(10): 1594.

[8]

Chen Zhigang, Zhang Yang, Luo Weijun, Zhang Renping, Yang Fuhua, Wang Xiaoliang, Li Jinmin. A High Performance AlGaN/GaN HEMT with a New Method for T-Gate Layout Design. J. Semicond., 2008, 29(9): 1654.

[9]

Huang Jie, Guo Tianyi, Zhang Haiying, Xu Jingbo, Fu Xiaojun, Yang Hao, Niu Jiebin. Fabrication of a 120 nm gate-length lattice-matched InGaAs/InAlAsInP-based HEMT. J. Semicond., 2010, 31(9): 094008. doi: 10.1088/1674-4926/31/9/094008

[10]

J. Panda, K. Jena, R. Swain, T. R. Lenka. Modeling on oxide dependent 2DEG sheet charge density and threshold voltage in AlGaN/GaN MOSHEMT. J. Semicond., 2016, 37(4): 044003. doi: 10.1088/1674-4926/37/4/044003

[11]

Devashish Pandey, T.R. Lenka. Model development for analyzing 2DEG sheet charge density and threshold voltage considering interface DOS for AlInN/GaN MOSHEMT. J. Semicond., 2014, 35(10): 104001. doi: 10.1088/1674-4926/35/10/104001

[12]

Huang Jie, Guo Tianyi, Zhang Haiying, Xu Jingbo, Fu Xiaojun, Yang Hao, Niu Jiebin. 120-nm gate-length In0.7Ga0.3As/In0.52Al0.48As InP-based HEMT. J. Semicond., 2010, 31(7): 074008. doi: 10.1088/1674-4926/31/7/074008

[13]

Jie Wang, Lingling Sun, Jun Liu, Mingzhu Zhou. A surface-potential-based model for AlGaN/AlN/GaN HEMT. J. Semicond., 2013, 34(9): 094002. doi: 10.1088/1674-4926/34/9/094002

[14]

Yu Tongjun, Kang Xiangning, Qin Zhixin, Chen Zhizhong, Yang Zhijian, Hu Xiaodong, Zhang Guoyi. Strain Effect on Photoluminescence from InGaN/GaN and InGaN/AlGaN MQWs. J. Semicond., 2006, 27(S1): 20.

[15]

Bai Song, Chen Gang, Zhang Tao, Li Zheyang, Wang Hao, Jiang Youquan, Han Chunlin, Chen Chen. Fabrication of SiC MESFETs for Microwave Power Applications. J. Semicond., 2007, 28(1): 10.

[16]

Guangyao Zhou, Shunli Ma, Ning Li, Fan Ye, Junyan Ren. A monolithic K-band phase-locked loop for microwave radar application. J. Semicond., 2017, 38(2): 025002. doi: 10.1088/1674-4926/38/2/025002

[17]

Xiaojia Wan, Xiaoliang Wang, Hongling Xiao, Chun Feng, Lijuan Jiang, Shenqi Qu, Zhanguo Wang, Xun Hou. Investigation of the current collapse induced in InGaN back barrier AlGaN/GaN high electron mobility transistors. J. Semicond., 2013, 34(10): 104002. doi: 10.1088/1674-4926/34/10/104002

[18]

Ji Xiaoli, Yang Fuhua, Wang Junxi, Duan Ruifei, Ding Kai, Zeng Yiping, Wang Guohong, Li Jinmin. Luminescence distribution and hole transport in asymmetric InGaN multiple-quantum well light-emitting diodes. J. Semicond., 2010, 31(9): 094009. doi: 10.1088/1674-4926/31/9/094009

[19]

Shirui Zhao, Yabin Dong, Mingyan Yu, Xiaolong Guo, Xinwei Xu, Yupeng Jing, Yang Xia. Microwave annealing effects on ZnO films deposited by atomic layer deposition. J. Semicond., 2014, 35(11): 112001. doi: 10.1088/1674-4926/35/11/112001

[20]

Luo Weijun, Chen Xiaojuan, Liang Xiaoxin, Ma Xiaolin, Liu Xinyu, Wang Xiaoliang. A Radial Stub Test Circuit for Microwave Power Devices. J. Semicond., 2006, 27(9): 1557.

Search

Advanced Search >>

GET CITATION

T. R. Lenka, G. N. Dash, A. K. Panda. RF and microwave characteristics of a 10 nm thick InGaN-channel gate recessed HEMT[J]. J. Semicond., 2013, 34(11): 114003. doi: 10.1088/1674-4926/34/11/114003.

Export: BibTex EndNote

Article Metrics

Article views: 642 Times PDF downloads: 8 Times Cited by: 0 Times

History

Manuscript received: 23 April 2013 Manuscript revised: 16 June 2013 Online: Published: 01 November 2013

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误