J. Semicond. > Volume 34 > Issue 2 > Article Number: 022001

Electronic structures and optical properties of a SiC nanotube with vacancy defects

Jiuxu Song 1, 2, , , Yintang Yang 1, , Ping Wang 3, , Lixin Guo 3, and Zhiyong Zhang 4,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: Based on first-principle calculations, the electronic structures and optical properties of a single-walled (7, 0) SiC nanotube (SiCNT) with a carbon vacancy defect or a silicon vacancy defect are investigated. In the three silicon atoms around the carbon vacancy, two atoms form a stable bond and the other is a dangling bond. A similar structure is found in the nanotube with a silicon vacancy. A carbon vacancy results in a defect level near the top of the valence band, while a silicon vacancy leads to the formation of three defect levels in the band gap of the nanotube. Transitions between defect levels and energy levels near the bottom of the conduction band have a close relationship with the formation of the novel dielectric peaks in the lower energy range of the dielectric function.

Key words: SiC nanotubevacancy defectfirst-principles studyelectronic structuresoptical properties

Abstract: Based on first-principle calculations, the electronic structures and optical properties of a single-walled (7, 0) SiC nanotube (SiCNT) with a carbon vacancy defect or a silicon vacancy defect are investigated. In the three silicon atoms around the carbon vacancy, two atoms form a stable bond and the other is a dangling bond. A similar structure is found in the nanotube with a silicon vacancy. A carbon vacancy results in a defect level near the top of the valence band, while a silicon vacancy leads to the formation of three defect levels in the band gap of the nanotube. Transitions between defect levels and energy levels near the bottom of the conduction band have a close relationship with the formation of the novel dielectric peaks in the lower energy range of the dielectric function.

Key words: SiC nanotubevacancy defectfirst-principles studyelectronic structuresoptical properties



References:

[1]

Shin Y S, Wang C M, Samuels W D. Synthesis of SiC nanorods from bleached wood pulp[J]. Mater Lett, 2005, 61(13): 2814.

[2]

Shim H W, Zhang Y F, Huang H C. Twin formation during SiC nanowire synthesis[J]. J Appl Phys, 2008, 104(6): 063511. doi: 10.1063/1.2979716

[3]

Jia J M, Ju S P, Shi D N. Electromechanical response of a SiC nanotube under local torsional deformation[J]. J Phys Chem C, 2011, 115(49): 24347. doi: 10.1021/jp207857e

[4]

Yang G Z, Cui H, Wang C X. Zn-induced density-controlled growth of β-SiC nanotubes with tunable field emission and hydrophobic properties[J]. Nano, 2011, 6(5): 441. doi: 10.1142/S1793292011002767

[5]

Xie Z, Tao D, Wang J. Synthesis of silicon carbide nanotubes by chemical vapor deposition[J]. J Nanosci Nanotechnol, 2007, 7(2): 647. doi: 10.1166/jnn.2007.142

[6]

Gali A, Son N T, Janzén E. Electrical characterization of metastable carbon clusters in SiC:a theoretical study[J]. Phys Rev B, 2006, 73(3): 033204. doi: 10.1103/PhysRevB.73.033204

[7]

Wagner M, Thinh N Q, Son N T. Ligand hyperfine interaction at the meutral silicon vacancy in 4H-and 6H-SiC[J]. Phys Rev B, 2002, 66(15): 155214. doi: 10.1103/PhysRevB.66.155214

[8]

Mizuochi N, Yamasaki S, Takizawa H. Spin multiplicity and charge state of a silicon vacancy (TV2a) in 4H-SiC determined by pulsed ENDOR[J]. Phys Rev B, 2005, 72(23): 235208. doi: 10.1103/PhysRevB.72.235208

[9]

Zhu Z G, Chutia A, Sahnoun R. Theoretical study on electronic and electrical properties of nanostructural ZnO[J]. Jpn J Appl Phys, 2008, 47(4): 2999. doi: 10.1143/JJAP.47.2999

[10]

Lin C S, Zhang R Q, Niehaus T A. Geometric and electronic structures of carbon nanotubes adsorbed with flavin adenine dinucleotide:a theoretical study[J]. J Phys Chem C, 2007, 111(11): 4069. doi: 10.1021/jp068846y

[11]

Zhang W H, Zhang F C, Zhang Z Y. A first-principles study of the size-dependent electronic properties of SiC nanotubes[J]. Science China:Physics, Mechanics and Astronomy, 2010, 53(7): 1333. doi: 10.1007/s11433-010-4029-7

[12]

Liu H X, Zhang H M, Hu H Y. Electronic transport properties of an (8, 0) carbon/silicon-carbide nanotube heterojunction[J]. Journal of Semiconductors, 2009, 30(5): 052002. doi: 10.1088/1674-4926/30/5/052002

[13]

Alam K M, Ray A K. A hybrid density functional study of zigzag SiC nanotubes[J]. Nanotechnology, 2007, 18(49): 495706. doi: 10.1088/0957-4484/18/49/495706

[14]

Wang L, Lu J, Luo G F. Optical absorption spectra and polarizabilities of silicon carbide nanotubes[J]. J Phys Chem C, 2007, 111(51): 18864. doi: 10.1021/jp074484y

[15]

Guo G Y, Ishibashi S, Tamura T. Static dielectric response and Born effective charge of BN nanotubes from ab initio finite electric field calculations[J]. Phys Rev B, 2007, 75(24): 245403. doi: 10.1103/PhysRevB.75.245403

[16]

Baierle R J, Piquini P, Neves L P. Ab initio study of native defects in SiC nanotubes[J]. Phys Rev B, 2006, 74(15): 15542.

[1]

Shin Y S, Wang C M, Samuels W D. Synthesis of SiC nanorods from bleached wood pulp[J]. Mater Lett, 2005, 61(13): 2814.

[2]

Shim H W, Zhang Y F, Huang H C. Twin formation during SiC nanowire synthesis[J]. J Appl Phys, 2008, 104(6): 063511. doi: 10.1063/1.2979716

[3]

Jia J M, Ju S P, Shi D N. Electromechanical response of a SiC nanotube under local torsional deformation[J]. J Phys Chem C, 2011, 115(49): 24347. doi: 10.1021/jp207857e

[4]

Yang G Z, Cui H, Wang C X. Zn-induced density-controlled growth of β-SiC nanotubes with tunable field emission and hydrophobic properties[J]. Nano, 2011, 6(5): 441. doi: 10.1142/S1793292011002767

[5]

Xie Z, Tao D, Wang J. Synthesis of silicon carbide nanotubes by chemical vapor deposition[J]. J Nanosci Nanotechnol, 2007, 7(2): 647. doi: 10.1166/jnn.2007.142

[6]

Gali A, Son N T, Janzén E. Electrical characterization of metastable carbon clusters in SiC:a theoretical study[J]. Phys Rev B, 2006, 73(3): 033204. doi: 10.1103/PhysRevB.73.033204

[7]

Wagner M, Thinh N Q, Son N T. Ligand hyperfine interaction at the meutral silicon vacancy in 4H-and 6H-SiC[J]. Phys Rev B, 2002, 66(15): 155214. doi: 10.1103/PhysRevB.66.155214

[8]

Mizuochi N, Yamasaki S, Takizawa H. Spin multiplicity and charge state of a silicon vacancy (TV2a) in 4H-SiC determined by pulsed ENDOR[J]. Phys Rev B, 2005, 72(23): 235208. doi: 10.1103/PhysRevB.72.235208

[9]

Zhu Z G, Chutia A, Sahnoun R. Theoretical study on electronic and electrical properties of nanostructural ZnO[J]. Jpn J Appl Phys, 2008, 47(4): 2999. doi: 10.1143/JJAP.47.2999

[10]

Lin C S, Zhang R Q, Niehaus T A. Geometric and electronic structures of carbon nanotubes adsorbed with flavin adenine dinucleotide:a theoretical study[J]. J Phys Chem C, 2007, 111(11): 4069. doi: 10.1021/jp068846y

[11]

Zhang W H, Zhang F C, Zhang Z Y. A first-principles study of the size-dependent electronic properties of SiC nanotubes[J]. Science China:Physics, Mechanics and Astronomy, 2010, 53(7): 1333. doi: 10.1007/s11433-010-4029-7

[12]

Liu H X, Zhang H M, Hu H Y. Electronic transport properties of an (8, 0) carbon/silicon-carbide nanotube heterojunction[J]. Journal of Semiconductors, 2009, 30(5): 052002. doi: 10.1088/1674-4926/30/5/052002

[13]

Alam K M, Ray A K. A hybrid density functional study of zigzag SiC nanotubes[J]. Nanotechnology, 2007, 18(49): 495706. doi: 10.1088/0957-4484/18/49/495706

[14]

Wang L, Lu J, Luo G F. Optical absorption spectra and polarizabilities of silicon carbide nanotubes[J]. J Phys Chem C, 2007, 111(51): 18864. doi: 10.1021/jp074484y

[15]

Guo G Y, Ishibashi S, Tamura T. Static dielectric response and Born effective charge of BN nanotubes from ab initio finite electric field calculations[J]. Phys Rev B, 2007, 75(24): 245403. doi: 10.1103/PhysRevB.75.245403

[16]

Baierle R J, Piquini P, Neves L P. Ab initio study of native defects in SiC nanotubes[J]. Phys Rev B, 2006, 74(15): 15542.

[1]

Zuo Chunying, Wen Jing, Zhong Cheng. First-principles study of the electronic structures and optical properties of C–F–Be doped wurtzite ZnO. J. Semicond., 2012, 33(7): 072001. doi: 10.1088/1674-4926/33/7/072001

[2]

Yingce Yan, Qi Wang, Huifang Ma. First principles calculations of electronic and optical properties of GaN1-xBix alloys. J. Semicond., 2014, 35(12): 122002. doi: 10.1088/1674-4926/35/12/122002

[3]

Zhuomao Zhu, Baoan Bian, Haifeng Shi. Effect of N and Fe codoping on the electronic structure and optical properties of TiO2 from first-principles study. J. Semicond., 2015, 36(10): 102003. doi: 10.1088/1674-4926/36/10/102003

[4]

Wanjun Yan, Chunhong Zhang, Zhongzheng Zhang, Quan Xie, Benhua Guo, Shiyun Zhou. The optical-electrical properties of doped β-FeSi2. J. Semicond., 2013, 34(10): 103003. doi: 10.1088/1674-4926/34/10/103003

[5]

Zhao Zongyan, Liu Qingju, Zhu Zhongqi, Zhang Jin. First-Principles Calculation of Electronic Structure and Optical Properties of Anatase TiO2. J. Semicond., 2007, 28(10): 1555.

[6]

Yan Wanjun, Xie Quan. First Principle Calculation of the Electronic Structure and Optical Properties of Impurity-Doped β-FeSi2 Semiconductors. J. Semicond., 2008, 29(6): 1141.

[7]

Zongyan Zhao, Xiang Zhao. Electronic, optical, and mechanical properties of Cu2ZnSnS4 with four crystal structures. J. Semicond., 2015, 36(8): 083004. doi: 10.1088/1674-4926/36/8/083004

[8]

Zheng Yongping, Chen Zhigao, Lu Yu, Wu Qingyun, Weng Zhenzhen, Huang Zhigao. Influence of Be-Doping on Electronic Structure and Optical Properties of ZnO. J. Semicond., 2008, 29(12): 2316.

[9]

Guili Liu, Yan Jiang, Yuanyuan Song, Shuang Zhou, Tianshuang Wang. Influence of tension-twisting deformations and defects on optical and electrical properties of B, N doped carbon nanotube superlattices. J. Semicond., 2016, 37(6): 063004. doi: 10.1088/1674-4926/37/6/063004

[10]

Xingyi Tan, Qiang Li, Yongdan Zhu. First-principles study of p-type ZnO by S-Na co-doping. J. Semicond., 2017, 38(8): 083001. doi: 10.1088/1674-4926/38/8/083001

[11]

Peijiang Niu, Jinliang Yan, Delan Meng. The effects of N-doping and oxygen vacancy on the electronic structure and conductivity of PbTiO3. J. Semicond., 2015, 36(4): 043004. doi: 10.1088/1674-4926/36/4/043004

[12]

Yinnü Zhao, Jinliang Yan. First-principles study of n-type tin/fluorine co-doped beta-gallium oxides. J. Semicond., 2015, 36(8): 082004. doi: 10.1088/1674-4926/36/8/082004

[13]

Liu Hongxia, Zhang Heming, Song Jiuxu, Zhang Zhiyong. Electronic structures of an (8, 0) boron nitride/carbon nanotube heterojunction. J. Semicond., 2010, 31(1): 013001. doi: 10.1088/1674-4926/31/1/013001

[14]

Sandong Guo . First-principles calculations of Mg2X (X = Si, Ge, Sn) semiconductors with the calcium fluorite structure. J. Semicond., 2015, 36(5): 053002. doi: 10.1088/1674-4926/36/5/053002

[15]

Zongyan Zhao, Dacheng Zhou, Juan Yi. Analysis of the electronic structures of 3d transition metals doped CuGaS2 based on DFT calculations. J. Semicond., 2014, 35(1): 013002. doi: 10.1088/1674-4926/35/1/013002

[16]

J.V. Thombare, M.C. Rath, S.H. Han, V.J. Fulari. The influence of monomer concentration on the optical properties of electrochemically synthesized polypyrrole thin films. J. Semicond., 2013, 34(10): 103002. doi: 10.1088/1674-4926/34/10/103002

[17]

Yao Zhaohui, Chen Tingjin, Xia Chaofeng, Yuan Hairong, Liu Zuming, Liao Hua, Wang Fan. Structural and Optical Properties of CdTe Thin Films on Glass Grown by Hot Wall Vacuum Deposition. J. Semicond., 2006, 27(7): 1236.

[18]

Wang Li, Pu Yong, Fang Wenqing, Mo Chunlan, Xiong Chuanbing, Jiang Fengyi. Effect of Surface-Covered Annealing on the Optical Properties of ZnO Films Grown by MOCVD. J. Semicond., 2003, 24(3): 409.

[19]

Sonet Kumar Saha, M. Azizar Rahman, M. R. H. Sarkar, M. Shahjahan, M. K. R. Khan. Effect of Co doping on structural, optical, electrical and thermal properties of nanostructured ZnO thin films. J. Semicond., 2015, 36(3): 033004. doi: 10.1088/1674-4926/36/3/033004

[20]

Yuping Cang, Xiaoling Yao, Dong Chen, Fan Yang, Huiming Yang. First-principles study on the electronic, elastic and thermodynamic properties of three novel germanium nitrides. J. Semicond., 2016, 37(7): 072002. doi: 10.1088/1674-4926/37/7/072002

Search

Advanced Search >>

GET CITATION

J X Song, Y T Yang, P Wang, L X Guo, Z Y Zhang. Electronic structures and optical properties of a SiC nanotube with vacancy defects[J]. J. Semicond., 2013, 34(2): 022001. doi: 10.1088/1674-4926/34/2/022001.

Export: BibTex EndNote

Article Metrics

Article views: 1009 Times PDF downloads: 10 Times Cited by: 0 Times

History

Manuscript received: 19 July 2012 Manuscript revised: 28 August 2012 Online: Published: 01 February 2013

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误