J. Semicond. > Volume 34 > Issue 2 > Article Number: 022002

Extraction of terahertz emission from a grating-coupled high-electron-mobility transistor

Yu Zhou 1, 2, , Xinxing Li 1, , Renbing Tan 1, 2, 3, , Wei Xue 4, , Yongdan Huang 1, , Shitao Lou 1, , Baoshun Zhang 1, and Hua Qin 1, ,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: In a grating-coupled high-electron-mobility transistor, weak terahertz emission with wavelength around 400 μm was observed by using a Fourier-transform spectrometer. The absolute terahertz emission power was extracted from a strong background blackbody emission by using a modulation technique. The power of terahertz emission is proportional to the drain-source current, while the power of blackbody emission has a distinct relation with the electrical power. The dependence on the drain-source bias and the gate voltage suggests that the terahertz emission is induced by accelerated electrons interacting with the grating.

Key words: two-dimensional electron systemSmith-Purcell radiationgrating couplerhigh-electron-mobility transistor

Abstract: In a grating-coupled high-electron-mobility transistor, weak terahertz emission with wavelength around 400 μm was observed by using a Fourier-transform spectrometer. The absolute terahertz emission power was extracted from a strong background blackbody emission by using a modulation technique. The power of terahertz emission is proportional to the drain-source current, while the power of blackbody emission has a distinct relation with the electrical power. The dependence on the drain-source bias and the gate voltage suggests that the terahertz emission is induced by accelerated electrons interacting with the grating.

Key words: two-dimensional electron systemSmith-Purcell radiationgrating couplerhigh-electron-mobility transistor



References:

[1]

Smith S J, Purcell E M. Visible light from localized surface charges moving across grating[J]. Phys Rev, 1953, 92: 1069.

[2]

Tsimring S E. Electron beams and microwave vacuum electron-ics[J]. New York:John Wiley & Sons, 2007.

[3]

Mikhailov S A. Plasma instability and amplification of electromagnetic waves in low-dimensional electron systems[J]. Phys Rev B, 1998, 58: 1517. doi: 10.1103/PhysRevB.58.1517

[4]

Tsui D C, Gornik E, Logan R A. Far infrared emission from plasma oscillations of Si inversion layers[J]. Solid State Commun, 1980, 35: 875. doi: 10.1016/0038-1098(80)91043-1

[5]

Gornik E, Christanell R, Weimann G. Analysis of carrier distribution function through Smith-Purcell effect in GaAs/GaAlAs heterostructures[J]. Solid-State Electron, 1988, 31: 751. doi: 10.1016/0038-1101(88)90381-4

[6]

Gornik E, Schwarz R, Lindemann G. Emission spectroscopy on two-dimensional systems[J]. Surf Sci, 1980, 98: 493. doi: 10.1016/0039-6028(80)90530-0

[7]

Wirner C, Kiener C, Boxleitner W. Direct observation of the hot electron distribution function in GaAs/AlGaAs heterostructures[J]. Phys Rev Lett, 1993, 70: 2609. doi: 10.1103/PhysRevLett.70.2609

[8]

Hirakawa K, Yamanaka K, Grayson M. Far-infrared emission spectroscopy of hot two-dimensional plasmons in Al0.3Ga0.7As=GaAs heterojunctions[J]. Appl Phys Lett, 1995, 67: 2326. doi: 10.1063/1.114333

[9]

Otsuji T, Meziani Y M, Hanabe M. Grating-bicoupled plasmon-resonant terahertz emitter fabricated with GaAs-based heterostructure material systems[J]. Appl Phys Lett, 2006, 89: 263502. doi: 10.1063/1.2410228

[10]

Otsuji T, Watanabe T, El Moutaouaki A. Emission of terahertz radiation from two-dimensional electron systems in semiconductor nano-and hetero-structures[J]. J Infrared Milli Terahz Waves, 2011, 32: 629. doi: 10.1007/s10762-010-9714-0

[11]

Meziani Y M, Handa H, Knap W. Room temperature terahertz emission from grating coupled two -dimensional plasmons[J]. Appl Phys Lett, 2008, 92: 201108. doi: 10.1063/1.2919097

[12]

Dyakonov M, Shur M. Shallow water analogy for a ballistic field effect transistor:new mechanism of plasma wave generation by dc current[J]. Phys Rev Lett, 1993, 71: 2465. doi: 10.1103/PhysRevLett.71.2465

[13]

Mikhailov S A. Design and theory of a graphene-based coherent terahertz emitter[J]. arXiv:1203.3983v1(cond-mat.mes-hall), 2012.

[1]

Smith S J, Purcell E M. Visible light from localized surface charges moving across grating[J]. Phys Rev, 1953, 92: 1069.

[2]

Tsimring S E. Electron beams and microwave vacuum electron-ics[J]. New York:John Wiley & Sons, 2007.

[3]

Mikhailov S A. Plasma instability and amplification of electromagnetic waves in low-dimensional electron systems[J]. Phys Rev B, 1998, 58: 1517. doi: 10.1103/PhysRevB.58.1517

[4]

Tsui D C, Gornik E, Logan R A. Far infrared emission from plasma oscillations of Si inversion layers[J]. Solid State Commun, 1980, 35: 875. doi: 10.1016/0038-1098(80)91043-1

[5]

Gornik E, Christanell R, Weimann G. Analysis of carrier distribution function through Smith-Purcell effect in GaAs/GaAlAs heterostructures[J]. Solid-State Electron, 1988, 31: 751. doi: 10.1016/0038-1101(88)90381-4

[6]

Gornik E, Schwarz R, Lindemann G. Emission spectroscopy on two-dimensional systems[J]. Surf Sci, 1980, 98: 493. doi: 10.1016/0039-6028(80)90530-0

[7]

Wirner C, Kiener C, Boxleitner W. Direct observation of the hot electron distribution function in GaAs/AlGaAs heterostructures[J]. Phys Rev Lett, 1993, 70: 2609. doi: 10.1103/PhysRevLett.70.2609

[8]

Hirakawa K, Yamanaka K, Grayson M. Far-infrared emission spectroscopy of hot two-dimensional plasmons in Al0.3Ga0.7As=GaAs heterojunctions[J]. Appl Phys Lett, 1995, 67: 2326. doi: 10.1063/1.114333

[9]

Otsuji T, Meziani Y M, Hanabe M. Grating-bicoupled plasmon-resonant terahertz emitter fabricated with GaAs-based heterostructure material systems[J]. Appl Phys Lett, 2006, 89: 263502. doi: 10.1063/1.2410228

[10]

Otsuji T, Watanabe T, El Moutaouaki A. Emission of terahertz radiation from two-dimensional electron systems in semiconductor nano-and hetero-structures[J]. J Infrared Milli Terahz Waves, 2011, 32: 629. doi: 10.1007/s10762-010-9714-0

[11]

Meziani Y M, Handa H, Knap W. Room temperature terahertz emission from grating coupled two -dimensional plasmons[J]. Appl Phys Lett, 2008, 92: 201108. doi: 10.1063/1.2919097

[12]

Dyakonov M, Shur M. Shallow water analogy for a ballistic field effect transistor:new mechanism of plasma wave generation by dc current[J]. Phys Rev Lett, 1993, 71: 2465. doi: 10.1103/PhysRevLett.71.2465

[13]

Mikhailov S A. Design and theory of a graphene-based coherent terahertz emitter[J]. arXiv:1203.3983v1(cond-mat.mes-hall), 2012.

[1]

Rongrui Liu, Yubing Wang, Dongdong Yin, Han Ye, Xiaohong Yang, Qin Han. A high-efficiency grating coupler between single-mode fiber and silicon-on-insulator waveguide. J. Semicond., 2017, 38(5): 054007. doi: 10.1088/1674-4926/38/5/054007

[2]

Hongda Chen, Zan Zhang, Beiju Huang, Luhong Mao, Zanyun Zhang. Progress in complementary metal-oxide-semiconductor silicon photonics and optoelectronic integrated circuits. J. Semicond., 2015, 36(12): 121001. doi: 10.1088/1674-4926/36/12/121001

[3]

Zhongxin Zheng, Jiandong Sun, Yu Zhou, Zhipeng Zhang, Hua Qin. Broadband terahertz radiation from a biased two-dimensional electron gas in an AlGaN/GaN heterostructure. J. Semicond., 2015, 36(10): 104002. doi: 10.1088/1674-4926/36/10/104002

[4]

Wang Limin, Cao Juncheng. Current Characteristics of High-Electron-Mobility Transistors Driven by a Terahertz Field and Magnetic Field. J. Semicond., 2008, 29(7): 1357.

[5]

Qin Ge, Hongqi Tao, Xuming Yu. A 1.8-3 GHz-band high efficiency GaAs pHEMT power amplifier MMIC. J. Semicond., 2015, 36(12): 125003. doi: 10.1088/1674-4926/36/12/125003

[6]

Xingheng Xia, Weijing Wu, Xiaofeng Song, Guanming Li, Lei Zhou, Lirong Zhang, Miao Xu, Lei Wang, Junbiao Peng. High-speed low-power voltage-programmed driving scheme for AMOLED displays. J. Semicond., 2015, 36(12): 125005. doi: 10.1088/1674-4926/36/12/125005

[7]

Jiqiang Niu, Yang Zhang, Min Guan, Chengyan Wang, Lijie Cui, Qiumin Yang, Yiyang Li, Yiping Zeng. Detection of lead ions with AlGaAs/InGaAs pseudomorphic high electron mobility transistor. J. Semicond., 2016, 37(11): 114003. doi: 10.1088/1674-4926/37/11/114003

[8]

Yun Kang, Sheng Wang, Xianli Li. Electron energy states in a two-dimensional GaAs quantum ring with hydrogenic donor impurity in the presence of magnetic field. J. Semicond., 2015, 36(3): 032003. doi: 10.1088/1674-4926/36/3/032003

[9]

Xu Wen. Quantum and Transport Mobilities of a Two-Dimensional Electron Gas in the Presence of the Rashba Spin-Orbit Interaction. J. Semicond., 2006, 27(2): 204.

[10]

Lu Jianduo, Xu Bin. Giant magnetoresistance in a two-dimensional electron gas modulated by ferromagnetic and Schottky metal stripes. J. Semicond., 2012, 33(7): 074007. doi: 10.1088/1674-4926/33/7/074007

[11]

Yang Liu, Changchun Chai, Chunlei Shi, Qingyang Fan, Yuqian Liu. Optimization design on breakdown voltage of AlGaN/GaN high-electron mobility transistor. J. Semicond., 2016, 37(12): 124002. doi: 10.1088/1674-4926/37/12/124002

[12]

Subhra Chowdhury, Swarnabha Chattaraj, Dhrubes Biswas. Design and simulation of a novel GaN based resonant tunneling high electron mobility transistor on a silicon substrate. J. Semicond., 2015, 36(4): 044001. doi: 10.1088/1674-4926/36/4/044001

[13]

S. Theodore Chandra, N. B. Balamurugan, M. Bhuvaneswari, N. Anbuselvan, N. Mohankumar. Analysis of charge density and Fermi level of AlInSb/InSb single-gate high electron mobility transistor. J. Semicond., 2015, 36(6): 064003. doi: 10.1088/1674-4926/36/6/064003

[14]

Bi Yang, Wang Xiaoliang, Xiao Hongling, Wang Cuimei, Yang Cuibai, Peng Enchao, Lin Defeng, Feng Chun, Jiang Lijuan. Simulation of electrical properties of InxAl1-xN/AlN/GaN high electron mobility transistor structure. J. Semicond., 2011, 32(8): 083003. doi: 10.1088/1674-4926/32/8/083003

[15]

Zhao Jianzhi, Lin Zhaojun, Lü Yuanjie, Corrigan Timothy D, Meng Lingguo, Zhang Yu, Wang Zhanguo, Chen Hong. Influence of Ni Schottky contact thickness on two-dimensional electron-gas sheet carrier concentration of strained Al0.3Ga0.7N/GaN heterostructures. J. Semicond., 2010, 31(8): 084007. doi: 10.1088/1674-4926/31/8/084007

[16]

Xubo Song, Guodong Gu, Yuangang Wang, Xin Tan, Xingye Zhou, Shaobo Dun, Peng Xu, Jiayun Yin, Bihua Wei, Zhihong Feng, Shujun Cai. AlN/GaN high electron mobility transistors on sapphire substrates for Kaband applications. J. Semicond., 2016, 37(4): 044007. doi: 10.1088/1674-4926/37/4/044007

[17]

Yuanhui Sun, Xinjiang Wang, Xin-Gang Zhao, Zhiming Shi, Lijun Zhang. First-principle high-throughput calculations of carrier effective masses of two-dimensional transition metal dichalcogenides. J. Semicond., 2018, 39(7): 072001. doi: 10.1088/1674-4926/39/7/072001

[18]

Du Wei, Xu Xingsheng, Han Weihua, Wang Chunxia, Zhang Yang, Yang Fuhua, Chen Hongda. Fabrication of a High Quality Etching Mask for Two-Dimensional Photonic Crystal Structures. J. Semicond., 2006, 27(9): 1640.

[19]

Yuanhui Sun, Xinjiang Wang, Xin-Gang Zhao, Zhiming Shi, Lijun Zhang. First-principle high-throughput calculations of carrier effective masses of two-dimensional transition metal dichalcogenides. J. Semicond., 2018, 39(7): 1.

[20]

Bo Gu. High temperature magnetic semiconductors: narrow band gaps and two-dimensional systems. J. Semicond., 2019, 40(8): 081504. doi: 10.1088/1674-4926/40/8/081504

Search

Advanced Search >>

GET CITATION

Y Zhou, X X Li, R B Tan, W Xue, Y D Huang, S T Lou, B S Zhang, H Qin. Extraction of terahertz emission from a grating-coupled high-electron-mobility transistor[J]. J. Semicond., 2013, 34(2): 022002. doi: 10.1088/1674-4926/34/2/022002.

Export: BibTex EndNote

Article Metrics

Article views: 1053 Times PDF downloads: 6 Times Cited by: 0 Times

History

Manuscript received: 02 July 2012 Manuscript revised: 24 September 2012 Online: Published: 01 February 2013

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误