Y Zhou, X X Li, R B Tan, W Xue, Y D Huang, S T Lou, B S Zhang, H Qin. Extraction of terahertz emission from a grating-coupled high-electron-mobility transistor[J]. J. Semicond., 2013, 34(2): 022002. doi: 10.1088/1674-4926/34/2/022002.
Yu Zhou 1, 2, , Xinxing Li 1, , Renbing Tan 1, 2, 3, , Wei Xue 4, , Yongdan Huang 1, , Shitao Lou 1, , Baoshun Zhang 1, and Hua Qin 1, ,
Abstract: In a grating-coupled high-electron-mobility transistor, weak terahertz emission with wavelength around 400 μm was observed by using a Fourier-transform spectrometer. The absolute terahertz emission power was extracted from a strong background blackbody emission by using a modulation technique. The power of terahertz emission is proportional to the drain-source current, while the power of blackbody emission has a distinct relation with the electrical power. The dependence on the drain-source bias and the gate voltage suggests that the terahertz emission is induced by accelerated electrons interacting with the grating.
Key words: two-dimensional electron system, Smith-Purcell radiation, grating coupler, high-electron-mobility transistor
Abstract: In a grating-coupled high-electron-mobility transistor, weak terahertz emission with wavelength around 400 μm was observed by using a Fourier-transform spectrometer. The absolute terahertz emission power was extracted from a strong background blackbody emission by using a modulation technique. The power of terahertz emission is proportional to the drain-source current, while the power of blackbody emission has a distinct relation with the electrical power. The dependence on the drain-source bias and the gate voltage suggests that the terahertz emission is induced by accelerated electrons interacting with the grating.
Key words:
two-dimensional electron system, Smith-Purcell radiation, grating coupler, high-electron-mobility transistor
References:
[1] |
Smith S J, Purcell E M. Visible light from localized surface charges moving across grating[J]. Phys Rev, 1953, 92: 1069. |
[2] |
Tsimring S E. Electron beams and microwave vacuum electron-ics[J]. New York:John Wiley & Sons, 2007. |
[3] |
Mikhailov S A. Plasma instability and amplification of electromagnetic waves in low-dimensional electron systems[J]. Phys Rev B, 1998, 58: 1517. doi: 10.1103/PhysRevB.58.1517 |
[4] |
Tsui D C, Gornik E, Logan R A. Far infrared emission from plasma oscillations of Si inversion layers[J]. Solid State Commun, 1980, 35: 875. doi: 10.1016/0038-1098(80)91043-1 |
[5] |
Gornik E, Christanell R, Weimann G. Analysis of carrier distribution function through Smith-Purcell effect in GaAs/GaAlAs heterostructures[J]. Solid-State Electron, 1988, 31: 751. doi: 10.1016/0038-1101(88)90381-4 |
[6] |
Gornik E, Schwarz R, Lindemann G. Emission spectroscopy on two-dimensional systems[J]. Surf Sci, 1980, 98: 493. doi: 10.1016/0039-6028(80)90530-0 |
[7] |
Wirner C, Kiener C, Boxleitner W. Direct observation of the hot electron distribution function in GaAs/AlGaAs heterostructures[J]. Phys Rev Lett, 1993, 70: 2609. doi: 10.1103/PhysRevLett.70.2609 |
[8] |
Hirakawa K, Yamanaka K, Grayson M. Far-infrared emission spectroscopy of hot two-dimensional plasmons in Al0.3Ga0.7As=GaAs heterojunctions[J]. Appl Phys Lett, 1995, 67: 2326. doi: 10.1063/1.114333 |
[9] |
Otsuji T, Meziani Y M, Hanabe M. Grating-bicoupled plasmon-resonant terahertz emitter fabricated with GaAs-based heterostructure material systems[J]. Appl Phys Lett, 2006, 89: 263502. doi: 10.1063/1.2410228 |
[10] |
Otsuji T, Watanabe T, El Moutaouaki A. Emission of terahertz radiation from two-dimensional electron systems in semiconductor nano-and hetero-structures[J]. J Infrared Milli Terahz Waves, 2011, 32: 629. doi: 10.1007/s10762-010-9714-0 |
[11] |
Meziani Y M, Handa H, Knap W. Room temperature terahertz emission from grating coupled two -dimensional plasmons[J]. Appl Phys Lett, 2008, 92: 201108. doi: 10.1063/1.2919097 |
[12] |
Dyakonov M, Shur M. Shallow water analogy for a ballistic field effect transistor:new mechanism of plasma wave generation by dc current[J]. Phys Rev Lett, 1993, 71: 2465. doi: 10.1103/PhysRevLett.71.2465 |
[13] |
Mikhailov S A. Design and theory of a graphene-based coherent terahertz emitter[J]. arXiv:1203.3983v1(cond-mat.mes-hall), 2012. |
[1] |
Smith S J, Purcell E M. Visible light from localized surface charges moving across grating[J]. Phys Rev, 1953, 92: 1069. |
[2] |
Tsimring S E. Electron beams and microwave vacuum electron-ics[J]. New York:John Wiley & Sons, 2007. |
[3] |
Mikhailov S A. Plasma instability and amplification of electromagnetic waves in low-dimensional electron systems[J]. Phys Rev B, 1998, 58: 1517. doi: 10.1103/PhysRevB.58.1517 |
[4] |
Tsui D C, Gornik E, Logan R A. Far infrared emission from plasma oscillations of Si inversion layers[J]. Solid State Commun, 1980, 35: 875. doi: 10.1016/0038-1098(80)91043-1 |
[5] |
Gornik E, Christanell R, Weimann G. Analysis of carrier distribution function through Smith-Purcell effect in GaAs/GaAlAs heterostructures[J]. Solid-State Electron, 1988, 31: 751. doi: 10.1016/0038-1101(88)90381-4 |
[6] |
Gornik E, Schwarz R, Lindemann G. Emission spectroscopy on two-dimensional systems[J]. Surf Sci, 1980, 98: 493. doi: 10.1016/0039-6028(80)90530-0 |
[7] |
Wirner C, Kiener C, Boxleitner W. Direct observation of the hot electron distribution function in GaAs/AlGaAs heterostructures[J]. Phys Rev Lett, 1993, 70: 2609. doi: 10.1103/PhysRevLett.70.2609 |
[8] |
Hirakawa K, Yamanaka K, Grayson M. Far-infrared emission spectroscopy of hot two-dimensional plasmons in Al0.3Ga0.7As=GaAs heterojunctions[J]. Appl Phys Lett, 1995, 67: 2326. doi: 10.1063/1.114333 |
[9] |
Otsuji T, Meziani Y M, Hanabe M. Grating-bicoupled plasmon-resonant terahertz emitter fabricated with GaAs-based heterostructure material systems[J]. Appl Phys Lett, 2006, 89: 263502. doi: 10.1063/1.2410228 |
[10] |
Otsuji T, Watanabe T, El Moutaouaki A. Emission of terahertz radiation from two-dimensional electron systems in semiconductor nano-and hetero-structures[J]. J Infrared Milli Terahz Waves, 2011, 32: 629. doi: 10.1007/s10762-010-9714-0 |
[11] |
Meziani Y M, Handa H, Knap W. Room temperature terahertz emission from grating coupled two -dimensional plasmons[J]. Appl Phys Lett, 2008, 92: 201108. doi: 10.1063/1.2919097 |
[12] |
Dyakonov M, Shur M. Shallow water analogy for a ballistic field effect transistor:new mechanism of plasma wave generation by dc current[J]. Phys Rev Lett, 1993, 71: 2465. doi: 10.1103/PhysRevLett.71.2465 |
[13] |
Mikhailov S A. Design and theory of a graphene-based coherent terahertz emitter[J]. arXiv:1203.3983v1(cond-mat.mes-hall), 2012. |
Y Zhou, X X Li, R B Tan, W Xue, Y D Huang, S T Lou, B S Zhang, H Qin. Extraction of terahertz emission from a grating-coupled high-electron-mobility transistor[J]. J. Semicond., 2013, 34(2): 022002. doi: 10.1088/1674-4926/34/2/022002.
Article views: 1216 Times PDF downloads: 6 Times Cited by: 0 Times
Manuscript received: 02 July 2012 Manuscript revised: 24 September 2012 Online: Published: 01 February 2013
Journal of Semiconductors © 2017 All Rights Reserved 京ICP备05085259号-2