J. Semicond. > Volume 34 > Issue 6 > Article Number: 062001

The impact of germanium in strained Si/relaxed Si1-xGex on carrier performance in non-degenerate and degenerate regimes

EngSiew Kang 1, , , S Anwar 2, , M T Ahmadi 1, and Razali Ismail 1,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: The impact of the fraction of germanium on the carrier performance of two-dimensional strained silicon, which embraces both the non-degenerate and degenerate regimes, is developed. In this model, the Fermi integral of order zero is employed. The impact of the fraction of germanium on the relaxed Si1-xGex substrate (x), carrier concentration and temperature is reported. It is revealed that the effect of x on the hole concentration is dominant for a normalized Fermi energy of more than three, or in other words the non-degenerate regime. On the contrary, the x gradient has less influence in the degenerate regime. Furthermore, by increasing x there is an increase in the intrinsic velocity, particularly with high carrier concentration and temperature.

Key words: germaniumintrinsic velocitySiGehole concentrationtwo dimensional

Abstract: The impact of the fraction of germanium on the carrier performance of two-dimensional strained silicon, which embraces both the non-degenerate and degenerate regimes, is developed. In this model, the Fermi integral of order zero is employed. The impact of the fraction of germanium on the relaxed Si1-xGex substrate (x), carrier concentration and temperature is reported. It is revealed that the effect of x on the hole concentration is dominant for a normalized Fermi energy of more than three, or in other words the non-degenerate regime. On the contrary, the x gradient has less influence in the degenerate regime. Furthermore, by increasing x there is an increase in the intrinsic velocity, particularly with high carrier concentration and temperature.

Key words: germaniumintrinsic velocitySiGehole concentrationtwo dimensional



References:

[1]

Vogelsang T, Hofmann K R. Electron mobilities and high-field drift velocities in strained silicon on silicon-germanium substrate[J]. Proc 50th Annu Device Res Conf Dig, 1992: 34.

[2]

Kumar M J, Venkataraman V, Nawal S. A simple analytical threshold voltage model of nanoscale single-layer fully depleted strained-silicon-on-insulator MOSFETs[J]. IEEE Trans Electron Devices, 2006, 53(10): 2500. doi: 10.1109/TED.2006.882041

[3]

Rim K, Anderson R, Boyd D. Strained Si CMOS (SS CMOS) technology:opportunities and challenges[J]. Solid-State Electron, 2003, 47: 1133. doi: 10.1016/S0038-1101(03)00041-8

[4]

Rim K, Hoyt J L, Gibbons J F. Fabrication and analysis of deep submicron strained-Si n-MOSFET's[J]. IEEE Trans Electron Devices, 2000, 47: 1406. doi: 10.1109/16.848284

[5]

Saad I, Riyadi M A, Taghi M. Analytical analysis of ballistic drift velocity in low-dimensional nano-devices[J]. Fourth Asia International Conference on Mathematica/Analytical Modeling and Computer Simulation, Kota Kinabalu, Malaysia, 2010: 601.

[6]

Ahmadi M T, Lau H H, Ismail R. Current-voltage characteristic of a silicon nanowire transistor[J]. Microelectron J, 2009, 40: 547. doi: 10.1016/j.mejo.2008.06.060

[7]

Arora V K. High-field distribution and mobility in semiconductors[J]. Jpn J Appl Phys, 1985, 24: 537. doi: 10.1143/JJAP.24.537

[8]

Lime F, Andrieu F, Derx J. Low temperature characterization of effective mobility in uniaxially and biaxially strained nMOSFETs[J]. Solid-State Electron, 2006, 50(4): 644. doi: 10.1016/j.sse.2006.03.036

[9]

Tinoco J C, Garcia R, Iniguez B. Threshold voltage model for bulk strained-silicon NMOSFETs[J]. Semicond Sci Technol, 2008, 23(3): 035017. doi: 10.1088/0268-1242/23/3/035017

[10]

Nayfeh H M, Hoyt J L, Antoniadis D A. A physically based analytical model for the threshold voltage of strained-Si n-MOSFETs[J]. IEEE Trans Electron Devices, 2004, 51(12): 2069. doi: 10.1109/TED.2004.838320

[11]

Briggs P J, Walker A B, Herbert D C. Modelling the influence of high currents on the cutoff frequency in Si/SiGe/Si heterojunction transistors[J]. Semicond Sci Technol, 1998, 13: 468. doi: 10.1088/0268-1242/13/5/005

[12]

Riyadi M A, Ahmadi M T, Susendo J E. Physics-based simulation of carrier velocity in 2-dimensional P-type MOSFET[J]. Third Asia International Conference on Modeling & Simulation, 2009: 735.

[13]

Arora V K. Quantum engineering of nanoelectronic devices[J]. Microelectron J, 2000, 31(11/12): 853.

[14]

Ahmadi M T, Ismail R, Tan M L P. The ultimate ballistic drift velocity in carbon nanotubes[J]. J Nanomater, 2008, 2008: 769250.

[1]

Vogelsang T, Hofmann K R. Electron mobilities and high-field drift velocities in strained silicon on silicon-germanium substrate[J]. Proc 50th Annu Device Res Conf Dig, 1992: 34.

[2]

Kumar M J, Venkataraman V, Nawal S. A simple analytical threshold voltage model of nanoscale single-layer fully depleted strained-silicon-on-insulator MOSFETs[J]. IEEE Trans Electron Devices, 2006, 53(10): 2500. doi: 10.1109/TED.2006.882041

[3]

Rim K, Anderson R, Boyd D. Strained Si CMOS (SS CMOS) technology:opportunities and challenges[J]. Solid-State Electron, 2003, 47: 1133. doi: 10.1016/S0038-1101(03)00041-8

[4]

Rim K, Hoyt J L, Gibbons J F. Fabrication and analysis of deep submicron strained-Si n-MOSFET's[J]. IEEE Trans Electron Devices, 2000, 47: 1406. doi: 10.1109/16.848284

[5]

Saad I, Riyadi M A, Taghi M. Analytical analysis of ballistic drift velocity in low-dimensional nano-devices[J]. Fourth Asia International Conference on Mathematica/Analytical Modeling and Computer Simulation, Kota Kinabalu, Malaysia, 2010: 601.

[6]

Ahmadi M T, Lau H H, Ismail R. Current-voltage characteristic of a silicon nanowire transistor[J]. Microelectron J, 2009, 40: 547. doi: 10.1016/j.mejo.2008.06.060

[7]

Arora V K. High-field distribution and mobility in semiconductors[J]. Jpn J Appl Phys, 1985, 24: 537. doi: 10.1143/JJAP.24.537

[8]

Lime F, Andrieu F, Derx J. Low temperature characterization of effective mobility in uniaxially and biaxially strained nMOSFETs[J]. Solid-State Electron, 2006, 50(4): 644. doi: 10.1016/j.sse.2006.03.036

[9]

Tinoco J C, Garcia R, Iniguez B. Threshold voltage model for bulk strained-silicon NMOSFETs[J]. Semicond Sci Technol, 2008, 23(3): 035017. doi: 10.1088/0268-1242/23/3/035017

[10]

Nayfeh H M, Hoyt J L, Antoniadis D A. A physically based analytical model for the threshold voltage of strained-Si n-MOSFETs[J]. IEEE Trans Electron Devices, 2004, 51(12): 2069. doi: 10.1109/TED.2004.838320

[11]

Briggs P J, Walker A B, Herbert D C. Modelling the influence of high currents on the cutoff frequency in Si/SiGe/Si heterojunction transistors[J]. Semicond Sci Technol, 1998, 13: 468. doi: 10.1088/0268-1242/13/5/005

[12]

Riyadi M A, Ahmadi M T, Susendo J E. Physics-based simulation of carrier velocity in 2-dimensional P-type MOSFET[J]. Third Asia International Conference on Modeling & Simulation, 2009: 735.

[13]

Arora V K. Quantum engineering of nanoelectronic devices[J]. Microelectron J, 2000, 31(11/12): 853.

[14]

Ahmadi M T, Ismail R, Tan M L P. The ultimate ballistic drift velocity in carbon nanotubes[J]. J Nanomater, 2008, 2008: 769250.

Search

Advanced Search >>

GET CITATION

E Kang, S Anwar, M T Ahmadi, R Ismail. The impact of germanium in strained Si/relaxed Si1-xGex on carrier performance in non-degenerate and degenerate regimes[J]. J. Semicond., 2013, 34(6): 062001. doi: 10.1088/1674-4926/34/6/062001.

Export: BibTex EndNote

Article Metrics

Article views: 1053 Times PDF downloads: 6 Times Cited by: 0 Times

History

Manuscript received: 03 October 2012 Manuscript revised: 24 December 2012 Online: Published: 01 June 2013

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误