Y X Qin, D Y Hua, X Li. First principles study on the surface-and orientation-dependent electronic structure of a WO3 nanowire[J]. J. Semicond., 2013, 34(6): 062002. doi: 10.1088/1674-4926/34/6/062002.
Abstract: The effects of the surface and orientation of a WO3 nanowire on the electronic structure are investigated by using first principles calculation based on density functional theory (DFT). The surface of the WO3 nanowire was terminated by a bare or hydrogenated oxygen monolayer or bare WO2 plane, and the[010]-and[001]-oriented nanowires with different sizes were introduced into the theoretical calculation to further study the dependence of electronic band structure on the wire size and orientation. The calculated results reveal that the surface structure, wire size and orientation have significant effects on the electronic band structure, bandgap, and density of states (DOS) of the WO3 nanowire. The optimized WO3 nanowire with different surface structures showed a markedly dissimilar band structure due to the different electronic states near the Fermi level, and the O-terminated[001] WO3 nanowire with hydrogenation can exhibit a reasonable indirect bandgap of 2.340 eV due to the quantum confinement effect, which is 0.257 eV wider than bulk WO3. Besides, the bandgap change is also related to the orientation-resulted surface reconstructed structure as well as wire size.
Key words: WO3 nanowire, density functional theory, electronic band structure, density of states
Abstract: The effects of the surface and orientation of a WO3 nanowire on the electronic structure are investigated by using first principles calculation based on density functional theory (DFT). The surface of the WO3 nanowire was terminated by a bare or hydrogenated oxygen monolayer or bare WO2 plane, and the[010]-and[001]-oriented nanowires with different sizes were introduced into the theoretical calculation to further study the dependence of electronic band structure on the wire size and orientation. The calculated results reveal that the surface structure, wire size and orientation have significant effects on the electronic band structure, bandgap, and density of states (DOS) of the WO3 nanowire. The optimized WO3 nanowire with different surface structures showed a markedly dissimilar band structure due to the different electronic states near the Fermi level, and the O-terminated[001] WO3 nanowire with hydrogenation can exhibit a reasonable indirect bandgap of 2.340 eV due to the quantum confinement effect, which is 0.257 eV wider than bulk WO3. Besides, the bandgap change is also related to the orientation-resulted surface reconstructed structure as well as wire size.
Key words:
WO3 nanowire, density functional theory, electronic band structure, density of states
References:
[1] |
Gubbala S, Thangala J, Sunkara M K. Nanowire-based electrochromic devices[J]. Sol Energy Mater Sol Cells, 2007, 91(9): 813. doi: 10.1016/j.solmat.2007.01.016 |
[2] |
Reyes L F, Hoel A. Gas sensor response of pure and activated WO3 nanoparticle films made by advanced reactive gas deposition[J]. Sens Actuators B, 2006, 117(1): 128. doi: 10.1016/j.snb.2005.11.008 |
[3] |
Cao B, Chen J, Tang X. Growth of monoclinic WO3 nanowire array for highly sensitive NO2 detection[J]. J Mater Chem, 2009, 19: 2323. doi: 10.1039/b816646c |
[4] |
Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides[J]. Science, 2001, 291: 1947. doi: 10.1126/science.1058120 |
[5] |
Baek Y, Yong K. Controlled growth and characterization of tungsten oxide nanowires using thermal evaporation of WO3 powder[J]. J Phys Chem C, 2007, 111: 1213. |
[6] |
Sun S, Zhao Y, Xia Y. Bundled tungsten oxide nanowires under thermal processing[J]. Nanotechnology, 2008, 19: 305709. doi: 10.1088/0957-4484/19/30/305709 |
[7] |
Li Lezhong, Yang Weiqing, Ding Yingchun. First principle study of the electronic structure of hafnium-doped anatase TiO2[J]. Journal of Semiconductors, 2012, 33(1): 012002. doi: 10.1088/1674-4926/33/1/012002 |
[8] |
Gao Pan, Zhang Xuejun, Zhou Wenfang. First-principle study on anatase TiO2 codoped with nitrogen and ytterbium[J]. Journal of Semiconductors, 2010, 31(3): 032001. doi: 10.1088/1674-4926/31/3/032001 |
[9] |
Si Panpan, Su Xiyu, Hou Qinying. First-principles calculation of the electronic band of ZnO doped with C[J]. Journal of Semiconductors, 2009, 30(5): 052001. doi: 10.1088/1674-4926/30/5/052001 |
[10] |
Yakovkin I N, Gutowski M. Driving force for the WO3(001) surface relaxation[J]. Surf Sci, 2007, 601(6): 1481. doi: 10.1016/j.susc.2007.01.013 |
[11] |
Wang F, Valentin C D, Pacchioni G. electronic and structural properties of WO3:a systematic hybrid DFT study[J]. J Phys Chem C, 2011, 115: 8345. doi: 10.1021/jp201057m |
[12] |
Cao B, Chen J, Tang X. Growth of monoclinic WO3 nanowire array for highly sensitive NO2 detection[J]. J Mater Chem, 2009, 19(16): 2323. doi: 10.1039/b816646c |
[13] |
Song X, Zheng Y, Yang E. Large-scale hydrothermal synthesis of WO3 nanowires in the presence of K2SO4[J]. Mater Lett, 2007, 61: 3904. doi: 10.1016/j.matlet.2006.12.055 |
[14] |
Loopstra B O, Boldrini P. Neutron diffraction investigation of WO3[J]. Acta Crystallogr B, 1966, 21: 158. doi: 10.1107/S0365110X66002469 |
[15] |
Gao M, You S, Wang Y. First-principles study of silicon nanowires with different surfaces[J]. Jpn J Appl Phys, 2008, 47: 3303. doi: 10.1143/JJAP.47.3303 |
[16] |
Zhang F C, Zhang Z Y, Zhang W H. First-principles study of the electronic and optical properties of ZnO nanowires[J]. Chin Phys B, 2009, 18: 2508. doi: 10.1088/1674-1056/18/6/065 |
[17] |
Li Y, Zhou Z, Chen Y. Do all wurtzite nanotubes prefer faceted ones[J]. J Chem Phys, 2009, 130: 204706. doi: 10.1063/1.3140099 |
[18] |
Vo T, Williamson A J, Galli G. First principles simulations of the structural and electronic properties of silicon nanowires[J]. Phys Rev B, 2006, 74(4): 045116. doi: 10.1103/PhysRevB.74.045116 |
[19] |
Hu W, Zhao Y, Liu Z. Nanostructural evolution:from one-dimensional tungsten oxide nanowires to three-dimensional ferberite flowers[J]. Chem Mater, 2008, 20: 5657. doi: 10.1021/cm801369h |
[20] |
Gillet M, Aguir K, Lemire C. The structure and electrical conductivity of vacuum-annealed WO3 thin films[J]. Thin Solid Films, 2004, 467: 239. doi: 10.1016/j.tsf.2004.04.018 |
[21] |
Filippi C, Singh D J, Umrigar C J. All-electron local-density and generalized-gradient calculations of the structural properties of semiconductors[J]. Phys Rev B, 1994, 50(20): 14947. doi: 10.1103/PhysRevB.50.14947 |
[22] |
Zhao X, Wei C M, Yang L. Quantum confinement and electronic properties of silicon nanowires[J]. Phys Rev Lett, 2004, 92(23): 236805. doi: 10.1103/PhysRevLett.92.236805 |
[23] |
May R A, Kondrachova L, Hahn B P. Optical constants of electrodeposited mixed molybdenum-tungsten oxide films determined by variable-angle spectroscopic ellipsometry[J]. J Phys Chem C, 2007, 111(49): 18251. doi: 10.1021/jp075835b |
[24] |
Zheng H, Ou J Z, Strano M S. Nanostructured tungsten oxide properties, synthesis, and applications[J]. Adv Funct Mater, 2011, 21: 2175. doi: 10.1002/adfm.v21.12 |
[25] |
Zhou Z, Zhao J, Chen Y. Energetics and electronic structures of AlN nanotubes/wires and their potential application as ammonia sensors[J]. Nanotechnology, 2007, 18: 424023. doi: 10.1088/0957-4484/18/42/424023 |
[26] |
Jones F H, Rawlings K, Foord J S. Superstructures and defect structures revealed by atomic-scale STM imaging of WO3 (001)[J]. Phys Rev B, 1995, 52(20): 14392. doi: 10.1103/PhysRevB.52.R14392 |
[1] |
Gubbala S, Thangala J, Sunkara M K. Nanowire-based electrochromic devices[J]. Sol Energy Mater Sol Cells, 2007, 91(9): 813. doi: 10.1016/j.solmat.2007.01.016 |
[2] |
Reyes L F, Hoel A. Gas sensor response of pure and activated WO3 nanoparticle films made by advanced reactive gas deposition[J]. Sens Actuators B, 2006, 117(1): 128. doi: 10.1016/j.snb.2005.11.008 |
[3] |
Cao B, Chen J, Tang X. Growth of monoclinic WO3 nanowire array for highly sensitive NO2 detection[J]. J Mater Chem, 2009, 19: 2323. doi: 10.1039/b816646c |
[4] |
Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides[J]. Science, 2001, 291: 1947. doi: 10.1126/science.1058120 |
[5] |
Baek Y, Yong K. Controlled growth and characterization of tungsten oxide nanowires using thermal evaporation of WO3 powder[J]. J Phys Chem C, 2007, 111: 1213. |
[6] |
Sun S, Zhao Y, Xia Y. Bundled tungsten oxide nanowires under thermal processing[J]. Nanotechnology, 2008, 19: 305709. doi: 10.1088/0957-4484/19/30/305709 |
[7] |
Li Lezhong, Yang Weiqing, Ding Yingchun. First principle study of the electronic structure of hafnium-doped anatase TiO2[J]. Journal of Semiconductors, 2012, 33(1): 012002. doi: 10.1088/1674-4926/33/1/012002 |
[8] |
Gao Pan, Zhang Xuejun, Zhou Wenfang. First-principle study on anatase TiO2 codoped with nitrogen and ytterbium[J]. Journal of Semiconductors, 2010, 31(3): 032001. doi: 10.1088/1674-4926/31/3/032001 |
[9] |
Si Panpan, Su Xiyu, Hou Qinying. First-principles calculation of the electronic band of ZnO doped with C[J]. Journal of Semiconductors, 2009, 30(5): 052001. doi: 10.1088/1674-4926/30/5/052001 |
[10] |
Yakovkin I N, Gutowski M. Driving force for the WO3(001) surface relaxation[J]. Surf Sci, 2007, 601(6): 1481. doi: 10.1016/j.susc.2007.01.013 |
[11] |
Wang F, Valentin C D, Pacchioni G. electronic and structural properties of WO3:a systematic hybrid DFT study[J]. J Phys Chem C, 2011, 115: 8345. doi: 10.1021/jp201057m |
[12] |
Cao B, Chen J, Tang X. Growth of monoclinic WO3 nanowire array for highly sensitive NO2 detection[J]. J Mater Chem, 2009, 19(16): 2323. doi: 10.1039/b816646c |
[13] |
Song X, Zheng Y, Yang E. Large-scale hydrothermal synthesis of WO3 nanowires in the presence of K2SO4[J]. Mater Lett, 2007, 61: 3904. doi: 10.1016/j.matlet.2006.12.055 |
[14] |
Loopstra B O, Boldrini P. Neutron diffraction investigation of WO3[J]. Acta Crystallogr B, 1966, 21: 158. doi: 10.1107/S0365110X66002469 |
[15] |
Gao M, You S, Wang Y. First-principles study of silicon nanowires with different surfaces[J]. Jpn J Appl Phys, 2008, 47: 3303. doi: 10.1143/JJAP.47.3303 |
[16] |
Zhang F C, Zhang Z Y, Zhang W H. First-principles study of the electronic and optical properties of ZnO nanowires[J]. Chin Phys B, 2009, 18: 2508. doi: 10.1088/1674-1056/18/6/065 |
[17] |
Li Y, Zhou Z, Chen Y. Do all wurtzite nanotubes prefer faceted ones[J]. J Chem Phys, 2009, 130: 204706. doi: 10.1063/1.3140099 |
[18] |
Vo T, Williamson A J, Galli G. First principles simulations of the structural and electronic properties of silicon nanowires[J]. Phys Rev B, 2006, 74(4): 045116. doi: 10.1103/PhysRevB.74.045116 |
[19] |
Hu W, Zhao Y, Liu Z. Nanostructural evolution:from one-dimensional tungsten oxide nanowires to three-dimensional ferberite flowers[J]. Chem Mater, 2008, 20: 5657. doi: 10.1021/cm801369h |
[20] |
Gillet M, Aguir K, Lemire C. The structure and electrical conductivity of vacuum-annealed WO3 thin films[J]. Thin Solid Films, 2004, 467: 239. doi: 10.1016/j.tsf.2004.04.018 |
[21] |
Filippi C, Singh D J, Umrigar C J. All-electron local-density and generalized-gradient calculations of the structural properties of semiconductors[J]. Phys Rev B, 1994, 50(20): 14947. doi: 10.1103/PhysRevB.50.14947 |
[22] |
Zhao X, Wei C M, Yang L. Quantum confinement and electronic properties of silicon nanowires[J]. Phys Rev Lett, 2004, 92(23): 236805. doi: 10.1103/PhysRevLett.92.236805 |
[23] |
May R A, Kondrachova L, Hahn B P. Optical constants of electrodeposited mixed molybdenum-tungsten oxide films determined by variable-angle spectroscopic ellipsometry[J]. J Phys Chem C, 2007, 111(49): 18251. doi: 10.1021/jp075835b |
[24] |
Zheng H, Ou J Z, Strano M S. Nanostructured tungsten oxide properties, synthesis, and applications[J]. Adv Funct Mater, 2011, 21: 2175. doi: 10.1002/adfm.v21.12 |
[25] |
Zhou Z, Zhao J, Chen Y. Energetics and electronic structures of AlN nanotubes/wires and their potential application as ammonia sensors[J]. Nanotechnology, 2007, 18: 424023. doi: 10.1088/0957-4484/18/42/424023 |
[26] |
Jones F H, Rawlings K, Foord J S. Superstructures and defect structures revealed by atomic-scale STM imaging of WO3 (001)[J]. Phys Rev B, 1995, 52(20): 14392. doi: 10.1103/PhysRevB.52.R14392 |
Y X Qin, D Y Hua, X Li. First principles study on the surface-and orientation-dependent electronic structure of a WO3 nanowire[J]. J. Semicond., 2013, 34(6): 062002. doi: 10.1088/1674-4926/34/6/062002.
Article views: 1258 Times PDF downloads: 7 Times Cited by: 0 Times
Manuscript received: 07 September 2012 Manuscript revised: 20 December 2012 Online: Published: 01 June 2013
Journal of Semiconductors © 2017 All Rights Reserved 京ICP备05085259号-2