J. Semicond. > Volume 34 > Issue 6 > Article Number: 062002

First principles study on the surface-and orientation-dependent electronic structure of a WO3 nanowire

Yuxiang Qin , , Deyan Hua and Xiao Li

+ Author Affiliations + Find other works by these authors

PDF

Abstract: The effects of the surface and orientation of a WO3 nanowire on the electronic structure are investigated by using first principles calculation based on density functional theory (DFT). The surface of the WO3 nanowire was terminated by a bare or hydrogenated oxygen monolayer or bare WO2 plane, and the[010]-and[001]-oriented nanowires with different sizes were introduced into the theoretical calculation to further study the dependence of electronic band structure on the wire size and orientation. The calculated results reveal that the surface structure, wire size and orientation have significant effects on the electronic band structure, bandgap, and density of states (DOS) of the WO3 nanowire. The optimized WO3 nanowire with different surface structures showed a markedly dissimilar band structure due to the different electronic states near the Fermi level, and the O-terminated[001] WO3 nanowire with hydrogenation can exhibit a reasonable indirect bandgap of 2.340 eV due to the quantum confinement effect, which is 0.257 eV wider than bulk WO3. Besides, the bandgap change is also related to the orientation-resulted surface reconstructed structure as well as wire size.

Key words: WO3 nanowiredensity functional theoryelectronic band structuredensity of states

Abstract: The effects of the surface and orientation of a WO3 nanowire on the electronic structure are investigated by using first principles calculation based on density functional theory (DFT). The surface of the WO3 nanowire was terminated by a bare or hydrogenated oxygen monolayer or bare WO2 plane, and the[010]-and[001]-oriented nanowires with different sizes were introduced into the theoretical calculation to further study the dependence of electronic band structure on the wire size and orientation. The calculated results reveal that the surface structure, wire size and orientation have significant effects on the electronic band structure, bandgap, and density of states (DOS) of the WO3 nanowire. The optimized WO3 nanowire with different surface structures showed a markedly dissimilar band structure due to the different electronic states near the Fermi level, and the O-terminated[001] WO3 nanowire with hydrogenation can exhibit a reasonable indirect bandgap of 2.340 eV due to the quantum confinement effect, which is 0.257 eV wider than bulk WO3. Besides, the bandgap change is also related to the orientation-resulted surface reconstructed structure as well as wire size.

Key words: WO3 nanowiredensity functional theoryelectronic band structuredensity of states



References:

[1]

Gubbala S, Thangala J, Sunkara M K. Nanowire-based electrochromic devices[J]. Sol Energy Mater Sol Cells, 2007, 91(9): 813. doi: 10.1016/j.solmat.2007.01.016

[2]

Reyes L F, Hoel A. Gas sensor response of pure and activated WO3 nanoparticle films made by advanced reactive gas deposition[J]. Sens Actuators B, 2006, 117(1): 128. doi: 10.1016/j.snb.2005.11.008

[3]

Cao B, Chen J, Tang X. Growth of monoclinic WO3 nanowire array for highly sensitive NO2 detection[J]. J Mater Chem, 2009, 19: 2323. doi: 10.1039/b816646c

[4]

Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides[J]. Science, 2001, 291: 1947. doi: 10.1126/science.1058120

[5]

Baek Y, Yong K. Controlled growth and characterization of tungsten oxide nanowires using thermal evaporation of WO3 powder[J]. J Phys Chem C, 2007, 111: 1213.

[6]

Sun S, Zhao Y, Xia Y. Bundled tungsten oxide nanowires under thermal processing[J]. Nanotechnology, 2008, 19: 305709. doi: 10.1088/0957-4484/19/30/305709

[7]

Li Lezhong, Yang Weiqing, Ding Yingchun. First principle study of the electronic structure of hafnium-doped anatase TiO2[J]. Journal of Semiconductors, 2012, 33(1): 012002. doi: 10.1088/1674-4926/33/1/012002

[8]

Gao Pan, Zhang Xuejun, Zhou Wenfang. First-principle study on anatase TiO2 codoped with nitrogen and ytterbium[J]. Journal of Semiconductors, 2010, 31(3): 032001. doi: 10.1088/1674-4926/31/3/032001

[9]

Si Panpan, Su Xiyu, Hou Qinying. First-principles calculation of the electronic band of ZnO doped with C[J]. Journal of Semiconductors, 2009, 30(5): 052001. doi: 10.1088/1674-4926/30/5/052001

[10]

Yakovkin I N, Gutowski M. Driving force for the WO3(001) surface relaxation[J]. Surf Sci, 2007, 601(6): 1481. doi: 10.1016/j.susc.2007.01.013

[11]

Wang F, Valentin C D, Pacchioni G. electronic and structural properties of WO3:a systematic hybrid DFT study[J]. J Phys Chem C, 2011, 115: 8345. doi: 10.1021/jp201057m

[12]

Cao B, Chen J, Tang X. Growth of monoclinic WO3 nanowire array for highly sensitive NO2 detection[J]. J Mater Chem, 2009, 19(16): 2323. doi: 10.1039/b816646c

[13]

Song X, Zheng Y, Yang E. Large-scale hydrothermal synthesis of WO3 nanowires in the presence of K2SO4[J]. Mater Lett, 2007, 61: 3904. doi: 10.1016/j.matlet.2006.12.055

[14]

Loopstra B O, Boldrini P. Neutron diffraction investigation of WO3[J]. Acta Crystallogr B, 1966, 21: 158. doi: 10.1107/S0365110X66002469

[15]

Gao M, You S, Wang Y. First-principles study of silicon nanowires with different surfaces[J]. Jpn J Appl Phys, 2008, 47: 3303. doi: 10.1143/JJAP.47.3303

[16]

Zhang F C, Zhang Z Y, Zhang W H. First-principles study of the electronic and optical properties of ZnO nanowires[J]. Chin Phys B, 2009, 18: 2508. doi: 10.1088/1674-1056/18/6/065

[17]

Li Y, Zhou Z, Chen Y. Do all wurtzite nanotubes prefer faceted ones[J]. J Chem Phys, 2009, 130: 204706. doi: 10.1063/1.3140099

[18]

Vo T, Williamson A J, Galli G. First principles simulations of the structural and electronic properties of silicon nanowires[J]. Phys Rev B, 2006, 74(4): 045116. doi: 10.1103/PhysRevB.74.045116

[19]

Hu W, Zhao Y, Liu Z. Nanostructural evolution:from one-dimensional tungsten oxide nanowires to three-dimensional ferberite flowers[J]. Chem Mater, 2008, 20: 5657. doi: 10.1021/cm801369h

[20]

Gillet M, Aguir K, Lemire C. The structure and electrical conductivity of vacuum-annealed WO3 thin films[J]. Thin Solid Films, 2004, 467: 239. doi: 10.1016/j.tsf.2004.04.018

[21]

Filippi C, Singh D J, Umrigar C J. All-electron local-density and generalized-gradient calculations of the structural properties of semiconductors[J]. Phys Rev B, 1994, 50(20): 14947. doi: 10.1103/PhysRevB.50.14947

[22]

Zhao X, Wei C M, Yang L. Quantum confinement and electronic properties of silicon nanowires[J]. Phys Rev Lett, 2004, 92(23): 236805. doi: 10.1103/PhysRevLett.92.236805

[23]

May R A, Kondrachova L, Hahn B P. Optical constants of electrodeposited mixed molybdenum-tungsten oxide films determined by variable-angle spectroscopic ellipsometry[J]. J Phys Chem C, 2007, 111(49): 18251. doi: 10.1021/jp075835b

[24]

Zheng H, Ou J Z, Strano M S. Nanostructured tungsten oxide properties, synthesis, and applications[J]. Adv Funct Mater, 2011, 21: 2175. doi: 10.1002/adfm.v21.12

[25]

Zhou Z, Zhao J, Chen Y. Energetics and electronic structures of AlN nanotubes/wires and their potential application as ammonia sensors[J]. Nanotechnology, 2007, 18: 424023. doi: 10.1088/0957-4484/18/42/424023

[26]

Jones F H, Rawlings K, Foord J S. Superstructures and defect structures revealed by atomic-scale STM imaging of WO3 (001)[J]. Phys Rev B, 1995, 52(20): 14392. doi: 10.1103/PhysRevB.52.R14392

[1]

Gubbala S, Thangala J, Sunkara M K. Nanowire-based electrochromic devices[J]. Sol Energy Mater Sol Cells, 2007, 91(9): 813. doi: 10.1016/j.solmat.2007.01.016

[2]

Reyes L F, Hoel A. Gas sensor response of pure and activated WO3 nanoparticle films made by advanced reactive gas deposition[J]. Sens Actuators B, 2006, 117(1): 128. doi: 10.1016/j.snb.2005.11.008

[3]

Cao B, Chen J, Tang X. Growth of monoclinic WO3 nanowire array for highly sensitive NO2 detection[J]. J Mater Chem, 2009, 19: 2323. doi: 10.1039/b816646c

[4]

Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides[J]. Science, 2001, 291: 1947. doi: 10.1126/science.1058120

[5]

Baek Y, Yong K. Controlled growth and characterization of tungsten oxide nanowires using thermal evaporation of WO3 powder[J]. J Phys Chem C, 2007, 111: 1213.

[6]

Sun S, Zhao Y, Xia Y. Bundled tungsten oxide nanowires under thermal processing[J]. Nanotechnology, 2008, 19: 305709. doi: 10.1088/0957-4484/19/30/305709

[7]

Li Lezhong, Yang Weiqing, Ding Yingchun. First principle study of the electronic structure of hafnium-doped anatase TiO2[J]. Journal of Semiconductors, 2012, 33(1): 012002. doi: 10.1088/1674-4926/33/1/012002

[8]

Gao Pan, Zhang Xuejun, Zhou Wenfang. First-principle study on anatase TiO2 codoped with nitrogen and ytterbium[J]. Journal of Semiconductors, 2010, 31(3): 032001. doi: 10.1088/1674-4926/31/3/032001

[9]

Si Panpan, Su Xiyu, Hou Qinying. First-principles calculation of the electronic band of ZnO doped with C[J]. Journal of Semiconductors, 2009, 30(5): 052001. doi: 10.1088/1674-4926/30/5/052001

[10]

Yakovkin I N, Gutowski M. Driving force for the WO3(001) surface relaxation[J]. Surf Sci, 2007, 601(6): 1481. doi: 10.1016/j.susc.2007.01.013

[11]

Wang F, Valentin C D, Pacchioni G. electronic and structural properties of WO3:a systematic hybrid DFT study[J]. J Phys Chem C, 2011, 115: 8345. doi: 10.1021/jp201057m

[12]

Cao B, Chen J, Tang X. Growth of monoclinic WO3 nanowire array for highly sensitive NO2 detection[J]. J Mater Chem, 2009, 19(16): 2323. doi: 10.1039/b816646c

[13]

Song X, Zheng Y, Yang E. Large-scale hydrothermal synthesis of WO3 nanowires in the presence of K2SO4[J]. Mater Lett, 2007, 61: 3904. doi: 10.1016/j.matlet.2006.12.055

[14]

Loopstra B O, Boldrini P. Neutron diffraction investigation of WO3[J]. Acta Crystallogr B, 1966, 21: 158. doi: 10.1107/S0365110X66002469

[15]

Gao M, You S, Wang Y. First-principles study of silicon nanowires with different surfaces[J]. Jpn J Appl Phys, 2008, 47: 3303. doi: 10.1143/JJAP.47.3303

[16]

Zhang F C, Zhang Z Y, Zhang W H. First-principles study of the electronic and optical properties of ZnO nanowires[J]. Chin Phys B, 2009, 18: 2508. doi: 10.1088/1674-1056/18/6/065

[17]

Li Y, Zhou Z, Chen Y. Do all wurtzite nanotubes prefer faceted ones[J]. J Chem Phys, 2009, 130: 204706. doi: 10.1063/1.3140099

[18]

Vo T, Williamson A J, Galli G. First principles simulations of the structural and electronic properties of silicon nanowires[J]. Phys Rev B, 2006, 74(4): 045116. doi: 10.1103/PhysRevB.74.045116

[19]

Hu W, Zhao Y, Liu Z. Nanostructural evolution:from one-dimensional tungsten oxide nanowires to three-dimensional ferberite flowers[J]. Chem Mater, 2008, 20: 5657. doi: 10.1021/cm801369h

[20]

Gillet M, Aguir K, Lemire C. The structure and electrical conductivity of vacuum-annealed WO3 thin films[J]. Thin Solid Films, 2004, 467: 239. doi: 10.1016/j.tsf.2004.04.018

[21]

Filippi C, Singh D J, Umrigar C J. All-electron local-density and generalized-gradient calculations of the structural properties of semiconductors[J]. Phys Rev B, 1994, 50(20): 14947. doi: 10.1103/PhysRevB.50.14947

[22]

Zhao X, Wei C M, Yang L. Quantum confinement and electronic properties of silicon nanowires[J]. Phys Rev Lett, 2004, 92(23): 236805. doi: 10.1103/PhysRevLett.92.236805

[23]

May R A, Kondrachova L, Hahn B P. Optical constants of electrodeposited mixed molybdenum-tungsten oxide films determined by variable-angle spectroscopic ellipsometry[J]. J Phys Chem C, 2007, 111(49): 18251. doi: 10.1021/jp075835b

[24]

Zheng H, Ou J Z, Strano M S. Nanostructured tungsten oxide properties, synthesis, and applications[J]. Adv Funct Mater, 2011, 21: 2175. doi: 10.1002/adfm.v21.12

[25]

Zhou Z, Zhao J, Chen Y. Energetics and electronic structures of AlN nanotubes/wires and their potential application as ammonia sensors[J]. Nanotechnology, 2007, 18: 424023. doi: 10.1088/0957-4484/18/42/424023

[26]

Jones F H, Rawlings K, Foord J S. Superstructures and defect structures revealed by atomic-scale STM imaging of WO3 (001)[J]. Phys Rev B, 1995, 52(20): 14392. doi: 10.1103/PhysRevB.52.R14392

[1]

Dong Chen, Yuping Cang, Yongsong Luo. Electronic structures and phase transition characters of β-, P61-, P62- and δ-Si3N4 under extreme conditions: a density functional theory study. J. Semicond., 2015, 36(2): 023003. doi: 10.1088/1674-4926/36/2/023003

[2]

Jian Qin, Ruohe Yao. Modeling of current-voltage characteristics for dual-gate amorphous silicon thin-film transistors considering deep Gaussian density-of-state distribution. J. Semicond., 2015, 36(12): 124005. doi: 10.1088/1674-4926/36/12/124005

[3]

Dahua Ren, Baoyan Xiang, Cheng Hu, Kai Qian, Xinlu Cheng. The electronic and optical properties of amorphous silica with hydrogen defects by ab initio calculations. J. Semicond., 2018, 39(4): 042002. doi: 10.1088/1674-4926/39/4/042002

[4]

M. Benaida, K. E. Aiadi, S. Mahtout, S. Djaadi, W. Rammal, M. Harb. Growth behavior and electronic properties of Gen + 1 and AsGen (n = 1–20) clusters: a DFT study. J. Semicond., 2019, 40(3): 032101. doi: 10.1088/1674-4926/40/3/032101

[5]

Ying Yang, Qing Feng, Weihua Wang, Yin Wang. First-principle study on the electronic and optical properties of the anatase TiO2 (101) surface. J. Semicond., 2013, 34(7): 073004. doi: 10.1088/1674-4926/34/7/073004

[6]

Yuping Cang, Xiaoling Yao, Dong Chen, Fan Yang, Huiming Yang. First-principles study on the electronic, elastic and thermodynamic properties of three novel germanium nitrides. J. Semicond., 2016, 37(7): 072002. doi: 10.1088/1674-4926/37/7/072002

[7]

Zhonghua Yang, Guili Liu, Yingdong Qu, Rongde Li. First-principle study on energy gap of CNT superlattice structure. J. Semicond., 2015, 36(10): 102002. doi: 10.1088/1674-4926/36/10/102002

[8]

Gui Yang, Yufeng Zhang, Xunwang Yan. Electronic structure and optical properties of a new type of semiconductor material:graphene monoxide. J. Semicond., 2013, 34(8): 083004. doi: 10.1088/1674-4926/34/8/083004

[9]

Jian Li. Electronic structure of (InSb)m/(HgTe)n short period superlattices. J. Semicond., 2014, 35(3): 032001. doi: 10.1088/1674-4926/35/3/032001

[10]

Azeem Nabi, Zarmeena Akhtar, Tahir Iqbal, Atif Ali, Arshad Javid. The electronic and magnetic properties of wurtzite Mn:CdS, Cr:CdS and Mn:Cr:CdS: first principles calculations. J. Semicond., 2017, 38(7): 073001. doi: 10.1088/1674-4926/38/7/073001

[11]

Jinbo Pan, Qimin Yan. Data-driven material discovery for photocatalysis: a short review. J. Semicond., 2018, 39(7): 071001. doi: 10.1088/1674-4926/39/7/071001

[12]

Haitao Li, Jun Qian, Fangfang Han, Tinghui Li. Density functional theory studies of the optical properties of a β-FeSi2 (100)/Si (001) interface at high pressure. J. Semicond., 2013, 34(7): 072003. doi: 10.1088/1674-4926/34/7/072003

[13]

Liu Hongxia, Zhang Heming, Song Jiuxu, Zhang Zhiyong. Electronic structures of an (8, 0) boron nitride/carbon nanotube heterojunction. J. Semicond., 2010, 31(1): 013001. doi: 10.1088/1674-4926/31/1/013001

[14]

T. Tibermacine, A. Merazga, M. Ledra, N. Ouhabab. Extraction of the defect density of states in microcrystalline silicon from experimental results and simulation studies. J. Semicond., 2015, 36(9): 093001. doi: 10.1088/1674-4926/36/9/093001

[15]

Zhao Hongwang, Hua Zhongqiu, Li Tongye, Wang Yu, Zhao Yong. Origin of varistor properties of tungsten trioxide (WO3) ceramics. J. Semicond., 2010, 31(2): 023001. doi: 10.1088/1674-4926/31/2/023001

[16]

Wenhan Cao. Analytical formulas for carrier density and Fermi energy in semiconductors with a tight-binding band. J. Semicond., 2015, 36(4): 042002. doi: 10.1088/1674-4926/36/4/042002

[17]

Ge Qin, Chen Xiaojuan, Luo Weijun, Yuan Tingting, Pang Lei, Liu Xinyu. A Ku-band high power density AlGaN/GaN HEMT monolithic power amplifier. J. Semicond., 2011, 32(8): 085001. doi: 10.1088/1674-4926/32/8/085001

[18]

Jianfeng Fan, Xiaoman Cheng, Xiao Bai, Lingcheng Zheng, Jing Jiang, Feng Wu. Performance enhancement of pentacene-based organic field-effect transistor by inserting a WO3 buffer layer. J. Semicond., 2014, 35(6): 064004. doi: 10.1088/1674-4926/35/6/064004

[19]

Jincheng Zhang, Chengwu Shi, Junjun Chen, Chao Ying, Ni Wu, Mao Wang. Pyrolysis preparation of WO3 thin films using ammonium metatungstate DMF/water solution for efficient compact layers in planar perovskite solar cells. J. Semicond., 2016, 37(3): 033002. doi: 10.1088/1674-4926/37/3/033002

[20]

Xiaojun Guo. High density three dimensional integration of organic transistors. J. Semicond., 2019, 40(3): 030201. doi: 10.1088/1674-4926/40/3/030201

Search

Advanced Search >>

GET CITATION

Y X Qin, D Y Hua, X Li. First principles study on the surface-and orientation-dependent electronic structure of a WO3 nanowire[J]. J. Semicond., 2013, 34(6): 062002. doi: 10.1088/1674-4926/34/6/062002.

Export: BibTex EndNote

Article Metrics

Article views: 977 Times PDF downloads: 7 Times Cited by: 0 Times

History

Manuscript received: 07 September 2012 Manuscript revised: 20 December 2012 Online: Published: 01 June 2013

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误