X S Qu, S S Zhang, H Y Bao, L L Xiong. The effect of InAs quantum-dot size and interdot distance on GaInP/GaAs/GaInAs/Ge multi-junction tandem solar cells[J]. J. Semicond., 2013, 34(6): 062003. doi: 10.1088/1674-4926/34/6/062003.
Abstract: A metamorphic GaInP/GaAs/GaInAs/Ge multi-junction solar cell with InAs quantum dots is investigated, and the analytical expression of the energy conversion efficiency on the multi-junction tandem solar cell is derived using the detailed balance principle and the Kronig-Penney model. The influences of interdot distance, quantum-dot size and the intermediate band location on the energy conversion efficiency are studied. This shows that the maximum efficiency, as a function of quantum-dot size and distance, is about 60.15% under the maximum concentration for only one InAs/GaAs subcell, and is even up to 39.69% for the overall cell. In addition, other efficiency factors such as current mismatch, the formation of a quasicontinuum conduction band and concentrated light are examined.
Key words: multi-junction solar cell, Kronig-Penney model, quantum dot, intermediate band, high efficiency
Abstract: A metamorphic GaInP/GaAs/GaInAs/Ge multi-junction solar cell with InAs quantum dots is investigated, and the analytical expression of the energy conversion efficiency on the multi-junction tandem solar cell is derived using the detailed balance principle and the Kronig-Penney model. The influences of interdot distance, quantum-dot size and the intermediate band location on the energy conversion efficiency are studied. This shows that the maximum efficiency, as a function of quantum-dot size and distance, is about 60.15% under the maximum concentration for only one InAs/GaAs subcell, and is even up to 39.69% for the overall cell. In addition, other efficiency factors such as current mismatch, the formation of a quasicontinuum conduction band and concentrated light are examined.
Key words:
multi-junction solar cell, Kronig-Penney model, quantum dot, intermediate band, high efficiency
References:
[1] |
Linares P G, Martí A, Antolín E. Ⅲ-Ⅴ compound semiconductor screening for implementing quantum dot intermediate band solar cells[J]. J Appl Phys, 2011, 109(1): 014313. doi: 10.1063/1.3527912 |
[2] |
Martí A, López N, Antolín E. Novel semiconductor solar cell structures:the quantum dot intermediateband solar cell[J]. Thin Solid Films, 2006, 511: 638. |
[3] |
Luque A, Martí A. Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels[J]. Phys Rev Lett, 1997, 78(26): 5014. doi: 10.1103/PhysRevLett.78.5014 |
[4] |
Mehdipour A, Ogawa M, Souma S. Tight binding modeling of intermediate band solar cells based on InAs/GaAs quantum dot arrays[J]. International Meeting for Future of Electron Devices, 2011: 36. |
[5] |
Ojajärvi J, Räsänen E, Sadewasser S. Tetrahedral chalcopyrite quantum dots for solar-cell applications[J]. Appl Phys Lett, 2011, 99(11): 111907. doi: 10.1063/1.3640225 |
[6] |
Guter W, Schone J, Philipps S P. Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight[J]. Appl Phys Lett, 2009, 94(22): 223504. doi: 10.1063/1.3148341 |
[7] |
Roosbroeck W, Shockley W. Photon-radiative recombination of electrons and holes in germanium[J]. Phys Rev Lett, 1954, 94: 1558. |
[8] |
Lazarenkova O L, Balandin A A. Miniband formation in a quantum dot crystal[J]. J Appl Phys, 2001, 89(10): 5509. doi: 10.1063/1.1366662 |
[9] |
Vurgaftman I, Meyer J R, Ram-Mohan L R. Band parameters for Ⅲ-Ⅴ compound semiconductors and their alloys[J]. J Appl Phys, 2001, 89(11): 5815. doi: 10.1063/1.1368156 |
[10] |
Shao Q, Balandin A A, Fedoseyev A I. Intermediate-band solar cells based on quantum dot supracrystals[J]. Appl Phys Lett, 2007, 91(16): 163503. doi: 10.1063/1.2799172 |
[11] |
Van Vechten J A, Bergstresser T K. Electronic structures of semiconductor alloys[J]. Phys Rev B, 1970, 1: 3351. doi: 10.1103/PhysRevB.1.3351 |
[12] |
Luque A, Martí A, López N. Experimental analysis of the quasi-Fermi level split in quantum dot intermediate-band solar cells[J]. App Phys Lett, 2005, 87(8): 083505. doi: 10.1063/1.2034090 |
[13] |
Martí A, Cuadra L, Luque A. Partial filling of a quantum dot intermediate band for solar cells[J]. IEEE Trans Electron Devices, 2001: 2394. |
[14] |
Cuadra L, Martí L, Luque A. Quantum dot intermediate band solar cell[J]. Conference Record of the 28th IEEE Photovoltaic Specialists Conference, 2000: 940. |
[15] |
Cui M, Chen N F, Yang X L. Fabrication and temperature dependence of a GaInP/GaAs/Ge tandem solar cell[J]. Journal of Semiconductors, 2012, 33(2): 024006. doi: 10.1088/1674-4926/33/2/024006 |
[1] |
Linares P G, Martí A, Antolín E. Ⅲ-Ⅴ compound semiconductor screening for implementing quantum dot intermediate band solar cells[J]. J Appl Phys, 2011, 109(1): 014313. doi: 10.1063/1.3527912 |
[2] |
Martí A, López N, Antolín E. Novel semiconductor solar cell structures:the quantum dot intermediateband solar cell[J]. Thin Solid Films, 2006, 511: 638. |
[3] |
Luque A, Martí A. Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels[J]. Phys Rev Lett, 1997, 78(26): 5014. doi: 10.1103/PhysRevLett.78.5014 |
[4] |
Mehdipour A, Ogawa M, Souma S. Tight binding modeling of intermediate band solar cells based on InAs/GaAs quantum dot arrays[J]. International Meeting for Future of Electron Devices, 2011: 36. |
[5] |
Ojajärvi J, Räsänen E, Sadewasser S. Tetrahedral chalcopyrite quantum dots for solar-cell applications[J]. Appl Phys Lett, 2011, 99(11): 111907. doi: 10.1063/1.3640225 |
[6] |
Guter W, Schone J, Philipps S P. Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight[J]. Appl Phys Lett, 2009, 94(22): 223504. doi: 10.1063/1.3148341 |
[7] |
Roosbroeck W, Shockley W. Photon-radiative recombination of electrons and holes in germanium[J]. Phys Rev Lett, 1954, 94: 1558. |
[8] |
Lazarenkova O L, Balandin A A. Miniband formation in a quantum dot crystal[J]. J Appl Phys, 2001, 89(10): 5509. doi: 10.1063/1.1366662 |
[9] |
Vurgaftman I, Meyer J R, Ram-Mohan L R. Band parameters for Ⅲ-Ⅴ compound semiconductors and their alloys[J]. J Appl Phys, 2001, 89(11): 5815. doi: 10.1063/1.1368156 |
[10] |
Shao Q, Balandin A A, Fedoseyev A I. Intermediate-band solar cells based on quantum dot supracrystals[J]. Appl Phys Lett, 2007, 91(16): 163503. doi: 10.1063/1.2799172 |
[11] |
Van Vechten J A, Bergstresser T K. Electronic structures of semiconductor alloys[J]. Phys Rev B, 1970, 1: 3351. doi: 10.1103/PhysRevB.1.3351 |
[12] |
Luque A, Martí A, López N. Experimental analysis of the quasi-Fermi level split in quantum dot intermediate-band solar cells[J]. App Phys Lett, 2005, 87(8): 083505. doi: 10.1063/1.2034090 |
[13] |
Martí A, Cuadra L, Luque A. Partial filling of a quantum dot intermediate band for solar cells[J]. IEEE Trans Electron Devices, 2001: 2394. |
[14] |
Cuadra L, Martí L, Luque A. Quantum dot intermediate band solar cell[J]. Conference Record of the 28th IEEE Photovoltaic Specialists Conference, 2000: 940. |
[15] |
Cui M, Chen N F, Yang X L. Fabrication and temperature dependence of a GaInP/GaAs/Ge tandem solar cell[J]. Journal of Semiconductors, 2012, 33(2): 024006. doi: 10.1088/1674-4926/33/2/024006 |
X S Qu, S S Zhang, H Y Bao, L L Xiong. The effect of InAs quantum-dot size and interdot distance on GaInP/GaAs/GaInAs/Ge multi-junction tandem solar cells[J]. J. Semicond., 2013, 34(6): 062003. doi: 10.1088/1674-4926/34/6/062003.
Article views: 1586 Times PDF downloads: 16 Times Cited by: 0 Times
Manuscript received: 08 October 2012 Manuscript revised: 22 January 2013 Online: Published: 01 June 2013
Journal of Semiconductors © 2017 All Rights Reserved 京ICP备05085259号-2