J. Semicond. > Volume 34 > Issue 6 > Article Number: 066004

Two-dimensional simulation of inductively coupled plasma based on COMSOL and comparison with experimental data

Jia Cheng 1, 2, , , Linhong Ji 1, 2, , Kesheng Wang 1, 2, , Chuankun Han 3, and Yixiang Shi 4,

+ Author Affilications + Find other works by these authors

PDF

Abstract: A two-dimensional axisymmetric inductively coupled plasma (ICP) model, and its implementation in the COMSOL multiphysical software, is described. The simulations are compared with the experimental results of argon discharge from the gaseous electronics conference RF reference cell in the inductively coupled plasma mode. The general trends of the number density and temperature of electrons with radial scanning are approximately correct. Finally, we discuss the reasons why the comparisons are not in agreement, and then propose an improvement in the assumptions of the Maxwellian electron energy distribution function and reaction rate.

Key words: inductively coupled plasmasimulationCOMSOL

Abstract: A two-dimensional axisymmetric inductively coupled plasma (ICP) model, and its implementation in the COMSOL multiphysical software, is described. The simulations are compared with the experimental results of argon discharge from the gaseous electronics conference RF reference cell in the inductively coupled plasma mode. The general trends of the number density and temperature of electrons with radial scanning are approximately correct. Finally, we discuss the reasons why the comparisons are not in agreement, and then propose an improvement in the assumptions of the Maxwellian electron energy distribution function and reaction rate.

Key words: inductively coupled plasmasimulationCOMSOL



References:

[1]

Lymberopoulos D P, Economou D J. 2-dimensional self-consistent radio-frequency plasma simulations relevant to the gaseous electronics conference RF reference cell[J]. J Res Natl Inst Stand Technol, 1995, 100(4): 473. doi: 10.6028/jres

[2]

Kim H C, Iza F, Yang S S. Particle and fluid simulations of low-temperature plasma discharges:benchmarks and kinetic effects[J]. J Phys D:Appl Phys, 2005, 38.

[3]

Surendra M. Radio frequency discharge benchmark model comparison[J]. Plasma Sources Sci Technol, 1995, 4: 56. doi: 10.1088/0963-0252/4/1/007

[4]

Miller P A, Hebner G A, Greenberg K E. An inductively-coupled plasma source for the gaseous electronics conference RF reference cell[J]. J Res Natl Inst Stand Technol, 1995, 100(4): 427. doi: 10.6028/jres

[5]

COMSOL 3. 2, Userbook.

[6]

Lymberopoulos D P, Economou D J. Fluid simulations of glow-discharges-effect of metastable atoms in argon[J]. J Appl Phys, 1993, 73(8): 3668. doi: 10.1063/1.352926

[7]

Panagopoulos T, Kim D, Midha V. Three-dimensional simulation of an inductively coupled plasma reactor[J]. J Appl Phys, 2002, 91(5): 2687. doi: 10.1063/1.1448673

[8]

Brcka J. Modeling remote H2 plasma in semiconductor processing tool[J]. Proceedings of the COMSOL Users Conference, Boston, 2006.

[9]

Lymberopoulos D P, Economou D J. 2-dimensional simulation of polysilicon etching with chlorine in a high-density plasma reactor[J]. IEEE Trans Plasma Sci, 1995, 23(4): 573. doi: 10.1109/27.467977

[10]

Novikova T, Kalache B, Bulkin P. Numerical modeling of capacitively coupled hydrogen plasmas:effects of frequency and pressure[J]. J Appl Phys, 2003, 93(6): 3198. doi: 10.1063/1.1555678

[11]

Lymberopoulos D P, Economou D J. Modeling and simulation of glow-discharge plasma reactors[J]. J Vac Sci Technol A, 1994, 12(4): 1229. doi: 10.1116/1.579300

[12]

Bukowski J D, Graves D B, Vitello P. Two-dimensional fluid model of an inductively coupled plasma with comparison to experimental spatial profiles[J]. J Appl Phys, 1996, 80(5): 2614. doi: 10.1063/1.363169

[13]

Jaeger E F, Berry L A, Tolliver J S. Power deposition in high-density inductively-coupled plasma tools for semiconductor processing[J]. Phys Plasmas, 1995, 2(6): 2597. doi: 10.1063/1.871222

[14]

Lee M H, Chung C W. On the E to H and H to E transition mechanisms in inductively coupled plasma[J]. Phys Plasmas, 2006, 13: 063510. doi: 10.1063/1.2212387

[15]

Rauf S, Kushner M J. Model for noncollisional heating in inductively coupled plasma processing sources[J]. J Appl Phys, 1997, 81(9): 5966. doi: 10.1063/1.364385

[16]

Sakiyama Y, Graves D B. Corona-glow transition in the atmospheric pressure RF-excited plasma needle[J]. J Phys D:Appl Phys, 2006, 39: 3644. doi: 10.1088/0022-3727/39/16/018

[17]

Cheng Jia, Zhu Yu, Wang Jinsong. Two-dimensional discharge simulation of inductively coupled plasma etcher[J]. Chinese Journal of Semiconductors, 2007, 28(6): 989.

[1]

Lymberopoulos D P, Economou D J. 2-dimensional self-consistent radio-frequency plasma simulations relevant to the gaseous electronics conference RF reference cell[J]. J Res Natl Inst Stand Technol, 1995, 100(4): 473. doi: 10.6028/jres

[2]

Kim H C, Iza F, Yang S S. Particle and fluid simulations of low-temperature plasma discharges:benchmarks and kinetic effects[J]. J Phys D:Appl Phys, 2005, 38.

[3]

Surendra M. Radio frequency discharge benchmark model comparison[J]. Plasma Sources Sci Technol, 1995, 4: 56. doi: 10.1088/0963-0252/4/1/007

[4]

Miller P A, Hebner G A, Greenberg K E. An inductively-coupled plasma source for the gaseous electronics conference RF reference cell[J]. J Res Natl Inst Stand Technol, 1995, 100(4): 427. doi: 10.6028/jres

[5]

COMSOL 3. 2, Userbook.

[6]

Lymberopoulos D P, Economou D J. Fluid simulations of glow-discharges-effect of metastable atoms in argon[J]. J Appl Phys, 1993, 73(8): 3668. doi: 10.1063/1.352926

[7]

Panagopoulos T, Kim D, Midha V. Three-dimensional simulation of an inductively coupled plasma reactor[J]. J Appl Phys, 2002, 91(5): 2687. doi: 10.1063/1.1448673

[8]

Brcka J. Modeling remote H2 plasma in semiconductor processing tool[J]. Proceedings of the COMSOL Users Conference, Boston, 2006.

[9]

Lymberopoulos D P, Economou D J. 2-dimensional simulation of polysilicon etching with chlorine in a high-density plasma reactor[J]. IEEE Trans Plasma Sci, 1995, 23(4): 573. doi: 10.1109/27.467977

[10]

Novikova T, Kalache B, Bulkin P. Numerical modeling of capacitively coupled hydrogen plasmas:effects of frequency and pressure[J]. J Appl Phys, 2003, 93(6): 3198. doi: 10.1063/1.1555678

[11]

Lymberopoulos D P, Economou D J. Modeling and simulation of glow-discharge plasma reactors[J]. J Vac Sci Technol A, 1994, 12(4): 1229. doi: 10.1116/1.579300

[12]

Bukowski J D, Graves D B, Vitello P. Two-dimensional fluid model of an inductively coupled plasma with comparison to experimental spatial profiles[J]. J Appl Phys, 1996, 80(5): 2614. doi: 10.1063/1.363169

[13]

Jaeger E F, Berry L A, Tolliver J S. Power deposition in high-density inductively-coupled plasma tools for semiconductor processing[J]. Phys Plasmas, 1995, 2(6): 2597. doi: 10.1063/1.871222

[14]

Lee M H, Chung C W. On the E to H and H to E transition mechanisms in inductively coupled plasma[J]. Phys Plasmas, 2006, 13: 063510. doi: 10.1063/1.2212387

[15]

Rauf S, Kushner M J. Model for noncollisional heating in inductively coupled plasma processing sources[J]. J Appl Phys, 1997, 81(9): 5966. doi: 10.1063/1.364385

[16]

Sakiyama Y, Graves D B. Corona-glow transition in the atmospheric pressure RF-excited plasma needle[J]. J Phys D:Appl Phys, 2006, 39: 3644. doi: 10.1088/0022-3727/39/16/018

[17]

Cheng Jia, Zhu Yu, Wang Jinsong. Two-dimensional discharge simulation of inductively coupled plasma etcher[J]. Chinese Journal of Semiconductors, 2007, 28(6): 989.

[1]

Cheng Jia, Ji Linhong, Zhu Yu, Shi Yixiang. Fluid model of inductively coupled plasma etcher based on COMSOL. J. Semicond., 2010, 31(3): 032004. doi: 10.1088/1674-4926/31/3/032004

[2]

Cheng Jia, Zhu Yu, Wang Jinsong. Two-Dimensional Discharge Simulation of InductivelyCoupled Plasma Etcher. J. Semicond., 2007, 28(6): 989.

[3]

Liu Liang, Zhang Haiying, Yin Junjian, Li Xiao, Xu Jingbo, Song Yuzhu, Liu Xunchun. A New Method for InGaAs/InP Composite ChannelHEMTs Simulation. J. Semicond., 2007, 28(11): 1706.

[4]

Yunfang Jia, Cheng Ju. Sentaurus® based modeling and simulation for GFET's characteristic for ssDNA immobilization and hybridization. J. Semicond., 2016, 37(1): 014005. doi: 10.1088/1674-4926/37/1/014005

[5]

Sidi Ould Saad Hamady. A simulation of doping and trap effects on the spectral response of AlGaN ultraviolet detectors. J. Semicond., 2012, 33(3): 034002. doi: 10.1088/1674-4926/33/3/034002

[6]

Yiluan Guo, Guilei Wang, Chao Zhao, Jun Luo. Simulation and characterization of stress in FinFETs using novel LKMC and nanobeam diffraction methods. J. Semicond., 2015, 36(8): 086001. doi: 10.1088/1674-4926/36/8/086001

[7]

Xiaohui Yi, Zhiwei Huang, Guangyang Lin, Cheng Li, Songyan Chen, Wei Huang, Jun Li, Jianyuan Wang. Simulation of the effects of defects in low temperature Ge buffer layer on dark current of Si-based Ge photodiodes. J. Semicond., 2017, 38(4): 042001. doi: 10.1088/1674-4926/38/4/042001

[8]

Chen Yiren, Song Hang, Li Dabing, Sun Xiaojuan, Li Zhiming, Jiang Hong, Miao Guoqing. GaN-based MSM photovoltaic ultraviolet detector structure modeling and its simulation. J. Semicond., 2011, 32(3): 034005. doi: 10.1088/1674-4926/32/3/034005

[9]

M. Benaicha, L. Dehimi, Nouredine Sengouga. Simulation of double junction In0.46Ga0.54N/Si tandem solar cell. J. Semicond., 2017, 38(4): 044002. doi: 10.1088/1674-4926/38/4/044002

[10]

Evangelos I. Dimitriadis, Nikolaos Georgoulas. Study of the effect of switching speed of the a-SiC/c-Si (p)-based, thyristor-like, ultra-high-speed switches, using two-dimensional simulation techniques. J. Semicond., 2017, 38(5): 054001. doi: 10.1088/1674-4926/38/5/054001

[11]

Jian Liu, Shihua Huang, Lü He. Simulation of a high-efficiency silicon-based heterojunction solar cell. J. Semicond., 2015, 36(4): 044010. doi: 10.1088/1674-4926/36/4/044010

[12]

Shihua Huang, Qiannan Li, Dan Chi, Xiuqing Meng, Lü He. Simulation approach for optimization of ZnO/c-WSe2 heterojunction solar cells. J. Semicond., 2017, 38(4): 044008. doi: 10.1088/1674-4926/38/4/044008

[13]

Ding Yan, Guo Weiling, Zhu Yanxu, Liu Ying, Liu Jianpeng, Yan Weiwei. Fabrication of high-voltage light emitting diodes with a deep isolation groove structure. J. Semicond., 2012, 33(9): 094007. doi: 10.1088/1674-4926/33/9/094007

[14]

Hao Luo, Cheng’ao Yang, Shengwen Xie, Xiaoli Chai, Shushan Huang, Yu Zhang, Yingqiang Xu, Zhichuan Niu. High order DBR GaSb based single longitude mode diode lasers at 2 μm wavelength. J. Semicond., 2018, 39(10): 104007. doi: 10.1088/1674-4926/39/10/104007

[15]

Qiu Weibin, Wang Jiaxian . Highly controllable ICP etching of GaAs based materials for grating fabrication. J. Semicond., 2012, 33(2): 026001. doi: 10.1088/1674-4926/33/2/026001

[16]

Cheng Jia, Zhu Yu, Duan Guanghong, Wang Chunhong. Analysis of Processing Chamber Flow Field Characteristics for an ICP Etcher Based on Regression Orthogonal Design. J. Semicond., 2008, 29(4): 780.

[17]

Zhao Jianyi, Guo Jian, Huang Xiaodong, Zhou Ning, Liu Wen. Spatial control based quantum well intermixing in InP/InGaAsP structures using ICP. J. Semicond., 2012, 33(10): 106001. doi: 10.1088/1674-4926/33/10/106001

[18]

Ma Long, Huang Yinglong, Zhang Yang, Wang Liangchen, Yang Fuhua, Zeng Yiping. Fabrication of an AlAs/In0.53Ga0.47As/InAs Resonant Tunneling Diode on InP Substrate for High-Speed Circuit Applications. J. Semicond., 2006, 27(6): 959.

[19]

Yongai Zhang, Tihang Lin, Xiangyao Zeng, Xiongtu Zhou, Tailiang Guo. Fabrication and field emission characteristics of a novel planar-gate electron source with patterned carbon nanotubes for backlight units. J. Semicond., 2013, 34(6): 064005. doi: 10.1088/1674-4926/34/6/064005

[20]

Shihua Huang, Zhe Rui, Dan Chi, Daxin Bao. Influence of defect states on the performances of planar tin halide perovskite solar cells. J. Semicond., 2019, 40(3): 032201. doi: 10.1088/1674-4926/40/3/032201

Search

Advanced Search >>

GET CITATION

J Cheng, L H Ji, K S Wang, C K Han, Y X Shi. Two-dimensional simulation of inductively coupled plasma based on COMSOL and comparison with experimental data[J]. J. Semicond., 2013, 34(6): 066004. doi: 10.1088/1674-4926/34/6/066004.

Export: BibTex EndNote

Article Metrics

Article views: 879 Times PDF downloads: 11 Times Cited by: 0 Times

History

Manuscript received: 11 October 2012 Manuscript revised: 23 December 2012 Online: Published: 01 June 2013

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误