J. Semicond. > Volume 34 > Issue 7 > Article Number: 072003

Density functional theory studies of the optical properties of a β-FeSi2 (100)/Si (001) interface at high pressure

Haitao Li 1, 3, , Jun Qian 2, , Fangfang Han 1, and Tinghui Li 1, ,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: High pressure has a significant influence on β-FeSi2 band gaps and optical absorption tuning. In this work, using density functional theory, we investigate the effect of high pressure on the optical absorption behavior of a β-FeSi2 (100)/Si (001) interface with some Si vacancies. As the pressure increases, the optical absorption peak down-shifts firstly, reach minimum values, and then un-shifts slowly. The electronic orbital analysis indicates that the electronic transition between the highest occupied states and the lowest unoccupied states mainly originate from Fe atoms at the interface regions. Structural analysis discloses that the Si (001) slab partially offsets the pressure exerted on the β-FeSi2 (100) interface, but this effect will become weaker with further increasing pressure, and this physical mechanism plays an important role in its optical absorption behavior.

Key words: β-FeSi2 (100)/Si (001) interfaceoptical absorptionelectronic structurehigh-pressure

Abstract: High pressure has a significant influence on β-FeSi2 band gaps and optical absorption tuning. In this work, using density functional theory, we investigate the effect of high pressure on the optical absorption behavior of a β-FeSi2 (100)/Si (001) interface with some Si vacancies. As the pressure increases, the optical absorption peak down-shifts firstly, reach minimum values, and then un-shifts slowly. The electronic orbital analysis indicates that the electronic transition between the highest occupied states and the lowest unoccupied states mainly originate from Fe atoms at the interface regions. Structural analysis discloses that the Si (001) slab partially offsets the pressure exerted on the β-FeSi2 (100) interface, but this effect will become weaker with further increasing pressure, and this physical mechanism plays an important role in its optical absorption behavior.

Key words: β-FeSi2 (100)/Si (001) interfaceoptical absorptionelectronic structurehigh-pressure



References:

[1]

Noda K, Terai Y, Hasimoto S. Modifications of direct transition energies in β-FeSi2 epitaxial films grown by molecular beam epitaxy[J]. Appl Phys Lett, 2009, 94: 241907. doi: 10.1063/1.3155204

[2]

Yamaguchi K, Mizushima K. Luminescent FeSi2 crystal structure induced by heteroepitaxial stress on Si (111)[J]. Phys Rev Lett, 2001, 86: 6006. doi: 10.1103/PhysRevLett.86.6006

[3]

Leong D, Harry M, Reeson K J. A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1.5μm[J]. Nature (London), 1997, 387: 686. doi: 10.1038/42667

[4]

Tani J, Takahashi M, Kido H. Lattice dynamics of β-FeSi2 from first-principles calculations[J]. Phys B, 2010, 405: 2200. doi: 10.1016/j.physb.2010.02.008

[5]

Tassis D H, Mitsas C L, Zorba T T. Infrared spectroscopic and electronic transport properties of polycrystalline semiconducting FeSi2 thin films[J]. J Appl Phys, 1996, 80: 962. doi: 10.1063/1.362908

[6]

Ito M, Nagai H, Oda E. Effects of P doping on the thermoelectric properties of β-FeSi2[J]. J Appl Phys, 2002, 91: 2138. doi: 10.1063/1.1436302

[7]

Ootsuka T, Liu Z X, Osamura M. Studies on aluminum-doped ZnO films for transparent electrode and antireflection coating of β-FeSi2 optoelectronic devices[J]. Thin Solid Films, 2005, 476: 30. doi: 10.1016/j.tsf.2004.06.145

[8]

Makita Y, Nakayama Y, Fukuzawa Y. Important research targets to be explored for β-FeSi2 device making[J]. Thin Solid Films, 2004, 461: 202. doi: 10.1016/j.tsf.2004.02.073

[9]

Xu J X, Yao R H, Liu Y R. Growth of β-FeSi2 thin film on textured silicon substrate for solar cell application[J]. Appl Surf Sci, 2011, 257: 10168. doi: 10.1016/j.apsusc.2011.07.011

[10]

Dalapati G K, Liew S L, Wong A S W. Photovoltaic characteristics of p-β-FeSi2(Al)/n-Si (100) heterojunction solar cells and the effects of interfacial engineering[J]. Appl Phys Lett, 2011, 98: 013507. doi: 10.1063/1.3536523

[11]

Leong D N, Harry M A, Resson K J. On the origin of the 1.5μm luminescence in ion beam synthesized β-FeSi2[J]. Appl Phys Lett, 1996, 68: 1649. doi: 10.1063/1.115893

[12]

Takarabe K, Teranishi R, Oinuma J. Optical properties of β-FeSi2 under pressure[J]. Phys Rev B, 2002, 65: 165215. doi: 10.1103/PhysRevB.65.165215

[13]

Clark S J, Al-Allak H M, Brand S. Structure and electronic properties of FeSi2[J]. Phys Rev B, 1998, 58: 10389. doi: 10.1103/PhysRevB.58.10389

[14]

Miglio L, Meregalli V, Jepsen O. Strain dependent gap nature of epitaxial β-FeSi2 in silicon by first principles calculations[J]. Appl Phys Lett, 1999, 75: 385. doi: 10.1063/1.124383

[15]

Tani J I, Takahashi M, Kido H. First-principles calculations of the structure and elastic properties of β-FeSi2 at high-press[J]. Intermetallics, 2010, 18: 1222. doi: 10.1016/j.intermet.2010.03.023

[16]

Miki T, Matsui Y, Teraoka Y. Point defects and thermoelectric properties of iron disilicide ceramics sintered with SiH4-plasma-processed micrograins[J]. J Appl Phys, 1994, 76: 2097. doi: 10.1063/1.357620

[17]

Liu Z X, Tanaka M, Kuroda R. Influence of Si/Fe ratio in multilayer structures on crystalline growth of β-FeSi2 thin film on Si substrate[J]. Appl Phys Lett, 2008, 93: 021907. doi: 10.1063/1.2957990

[18]

Hamann D R, Schluter M, Chiang C. Norm-conserving pseudopotentials[J]. Phys Rev Lett, 1979, 43: 1494. doi: 10.1103/PhysRevLett.43.1494

[19]

Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77: 3865. doi: 10.1103/PhysRevLett.77.3865

[20]

Liu L Z, W Xu, Wu X L. Electronic states and photoluminescence of TiO2 nanotubes with adsorbed surface oxygen[J]. Appl Phys Lett, 2012, 100: 121904. doi: 10.1063/1.3695167

[21]

Liu L Z, Wu X L, Liu X X. Electronic structure and optical properties of β-FeSi2 (100)/Si (001) interface at high pressure[J]. Appl Phys Lett, 2012, 101: 111909. doi: 10.1063/1.4752154

[1]

Noda K, Terai Y, Hasimoto S. Modifications of direct transition energies in β-FeSi2 epitaxial films grown by molecular beam epitaxy[J]. Appl Phys Lett, 2009, 94: 241907. doi: 10.1063/1.3155204

[2]

Yamaguchi K, Mizushima K. Luminescent FeSi2 crystal structure induced by heteroepitaxial stress on Si (111)[J]. Phys Rev Lett, 2001, 86: 6006. doi: 10.1103/PhysRevLett.86.6006

[3]

Leong D, Harry M, Reeson K J. A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1.5μm[J]. Nature (London), 1997, 387: 686. doi: 10.1038/42667

[4]

Tani J, Takahashi M, Kido H. Lattice dynamics of β-FeSi2 from first-principles calculations[J]. Phys B, 2010, 405: 2200. doi: 10.1016/j.physb.2010.02.008

[5]

Tassis D H, Mitsas C L, Zorba T T. Infrared spectroscopic and electronic transport properties of polycrystalline semiconducting FeSi2 thin films[J]. J Appl Phys, 1996, 80: 962. doi: 10.1063/1.362908

[6]

Ito M, Nagai H, Oda E. Effects of P doping on the thermoelectric properties of β-FeSi2[J]. J Appl Phys, 2002, 91: 2138. doi: 10.1063/1.1436302

[7]

Ootsuka T, Liu Z X, Osamura M. Studies on aluminum-doped ZnO films for transparent electrode and antireflection coating of β-FeSi2 optoelectronic devices[J]. Thin Solid Films, 2005, 476: 30. doi: 10.1016/j.tsf.2004.06.145

[8]

Makita Y, Nakayama Y, Fukuzawa Y. Important research targets to be explored for β-FeSi2 device making[J]. Thin Solid Films, 2004, 461: 202. doi: 10.1016/j.tsf.2004.02.073

[9]

Xu J X, Yao R H, Liu Y R. Growth of β-FeSi2 thin film on textured silicon substrate for solar cell application[J]. Appl Surf Sci, 2011, 257: 10168. doi: 10.1016/j.apsusc.2011.07.011

[10]

Dalapati G K, Liew S L, Wong A S W. Photovoltaic characteristics of p-β-FeSi2(Al)/n-Si (100) heterojunction solar cells and the effects of interfacial engineering[J]. Appl Phys Lett, 2011, 98: 013507. doi: 10.1063/1.3536523

[11]

Leong D N, Harry M A, Resson K J. On the origin of the 1.5μm luminescence in ion beam synthesized β-FeSi2[J]. Appl Phys Lett, 1996, 68: 1649. doi: 10.1063/1.115893

[12]

Takarabe K, Teranishi R, Oinuma J. Optical properties of β-FeSi2 under pressure[J]. Phys Rev B, 2002, 65: 165215. doi: 10.1103/PhysRevB.65.165215

[13]

Clark S J, Al-Allak H M, Brand S. Structure and electronic properties of FeSi2[J]. Phys Rev B, 1998, 58: 10389. doi: 10.1103/PhysRevB.58.10389

[14]

Miglio L, Meregalli V, Jepsen O. Strain dependent gap nature of epitaxial β-FeSi2 in silicon by first principles calculations[J]. Appl Phys Lett, 1999, 75: 385. doi: 10.1063/1.124383

[15]

Tani J I, Takahashi M, Kido H. First-principles calculations of the structure and elastic properties of β-FeSi2 at high-press[J]. Intermetallics, 2010, 18: 1222. doi: 10.1016/j.intermet.2010.03.023

[16]

Miki T, Matsui Y, Teraoka Y. Point defects and thermoelectric properties of iron disilicide ceramics sintered with SiH4-plasma-processed micrograins[J]. J Appl Phys, 1994, 76: 2097. doi: 10.1063/1.357620

[17]

Liu Z X, Tanaka M, Kuroda R. Influence of Si/Fe ratio in multilayer structures on crystalline growth of β-FeSi2 thin film on Si substrate[J]. Appl Phys Lett, 2008, 93: 021907. doi: 10.1063/1.2957990

[18]

Hamann D R, Schluter M, Chiang C. Norm-conserving pseudopotentials[J]. Phys Rev Lett, 1979, 43: 1494. doi: 10.1103/PhysRevLett.43.1494

[19]

Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77: 3865. doi: 10.1103/PhysRevLett.77.3865

[20]

Liu L Z, W Xu, Wu X L. Electronic states and photoluminescence of TiO2 nanotubes with adsorbed surface oxygen[J]. Appl Phys Lett, 2012, 100: 121904. doi: 10.1063/1.3695167

[21]

Liu L Z, Wu X L, Liu X X. Electronic structure and optical properties of β-FeSi2 (100)/Si (001) interface at high pressure[J]. Appl Phys Lett, 2012, 101: 111909. doi: 10.1063/1.4752154

[1]

Yan Wanjun, Xie Quan. First Principle Calculation of the Electronic Structure and Optical Properties of Impurity-Doped β-FeSi2 Semiconductors. J. Semicond., 2008, 29(6): 1141.

[2]

Jinliang Yan, Chong Qu. Electronic structure and optical properties of F-doped β-Ga2O3 from first principles calculations. J. Semicond., 2016, 37(4): 042002. doi: 10.1088/1674-4926/37/4/042002

[3]

Zhao Zongyan, Liu Qingju, Zhu Zhongqi, Zhang Jin. First-Principles Calculation of Electronic Structure and Optical Properties of Anatase TiO2. J. Semicond., 2007, 28(10): 1555.

[4]

Zhuomao Zhu, Baoan Bian, Haifeng Shi. Effect of N and Fe codoping on the electronic structure and optical properties of TiO2 from first-principles study. J. Semicond., 2015, 36(10): 102003. doi: 10.1088/1674-4926/36/10/102003

[5]

Guipeng Sun, Jinliang Yan, Peijiang Niu, Delan Meng. Electronic structure and optical property of p-type Zn-doped SnO2 with Sn vacancy. J. Semicond., 2016, 37(2): 023005. doi: 10.1088/1674-4926/37/2/023005

[6]

Lin Yuanhua, Wang Jianfei, He Hongcai, Zhou Jianping, Zhou Xisong, Nan Cewen. Preparation of Dielectric Bi2Ti2O7 Thin Film by Pulsed Laser Deposition Method and Its Optical Absorption Properties. J. Semicond., 2005, 26(S1): 74.

[7]

Ying Yang, Qing Feng, Weihua Wang, Yin Wang. First-principle study on the electronic and optical properties of the anatase TiO2 (101) surface. J. Semicond., 2013, 34(7): 073004. doi: 10.1088/1674-4926/34/7/073004

[8]

Zongyan Zhao, Xiang Zhao. Electronic, optical, and mechanical properties of Cu2ZnSnS4 with four crystal structures. J. Semicond., 2015, 36(8): 083004. doi: 10.1088/1674-4926/36/8/083004

[9]

Zheng Yongping, Chen Zhigao, Lu Yu, Wu Qingyun, Weng Zhenzhen, Huang Zhigao. Influence of Be-Doping on Electronic Structure and Optical Properties of ZnO. J. Semicond., 2008, 29(12): 2316.

[10]

Guoping Luo, Yingmei Bian, Ruifeng Wu, Guoxia Lai, Xiangfu Xu, Weiwei Zhang, Xingyuan Chen. First principles study of the electronic structure and photovoltaic properties of β-CuGaO2 with MBJ + U approach. J. Semicond., 2020, 41(10): 102102. doi: 10.1088/1674-4926/41/10/102102

[11]

Zhang Guoyu, Xiu Xiangqian, Zhang Rong, Tao Zhikuo, Cui Xugao, Zhang Jiachen, Xie Zili, Xu Xiaonong, Zheng Youdou. High-Pressure and Temperature Synthesized Co-Doped ZnO Based DMSs. J. Semicond., 2008, 29(6): 1156.

[12]

Yan Wanjun, Xie Quan, Zhang Jinmin, Xiao Qingquan, Liang Yan, Zeng Wuxian. Interband Optical Transitions in Semiconducting Iron Disilicide β-FeSi2. J. Semicond., 2007, 28(9): 1381.

[13]

Yinnü Zhao, Jinliang Yan. Effects of N concentration on electronic and optical properties of N-doped PbTiO3. J. Semicond., 2015, 36(9): 093005. doi: 10.1088/1674-4926/36/9/093005

[14]

Shujuan Jiao, Jinliang Yan, Guipeng Sun, Yinnü Zhao. Electronic structures and optical properties of Nb-doped SrTiO3 from first principles. J. Semicond., 2016, 37(7): 072001. doi: 10.1088/1674-4926/37/7/072001

[15]

Sheng Wang, Yun Kang, Chunjie Han. Transverse Stark effect in the optical absorption in a square semiconducting quantum wire. J. Semicond., 2013, 34(10): 102001. doi: 10.1088/1674-4926/34/10/102001

[16]

Sheng Wang, Yun Kang, Xianli Li. Donor impurity-related optical absorption coefficients and refractive index changes in a rectangular GaAs quantum dot in the presence of electric field. J. Semicond., 2016, 37(11): 112001. doi: 10.1088/1674-4926/37/11/112001

[17]

Li Jingbo, Wang Linwang, Wei Suhuai. Electronic Structure of Semiconductor Nanocrystals. J. Semicond., 2006, 27(2): 191.

[18]

Kong Jieying, Zhang Rong, Liu Bin, Xie Zili, Zhang Yong, Xiu Xiangqian, Zheng Youdou. Optical Properties of InN Films Grown by MOCVD. J. Semicond., 2007, 28(11): 1761.

[19]

P. Christina Lily Jasmine, A. John Peter. Magneto-polaron induced intersubband optical transition in a wide band gap II—VI semiconductor quantum dot. J. Semicond., 2015, 36(3): 032001. doi: 10.1088/1674-4926/36/3/032001

[20]

Guili Liu, Yan Jiang, Yuanyuan Song, Shuang Zhou, Tianshuang Wang. Influence of tension-twisting deformations and defects on optical and electrical properties of B, N doped carbon nanotube superlattices. J. Semicond., 2016, 37(6): 063004. doi: 10.1088/1674-4926/37/6/063004

Search

Advanced Search >>

GET CITATION

H T Li, J Qian, F F Han, T H Li. Density functional theory studies of the optical properties of a β-FeSi2 (100)/Si (001) interface at high pressure[J]. J. Semicond., 2013, 34(7): 072003. doi: 10.1088/1674-4926/34/7/072003.

Export: BibTex EndNote

Article Metrics

Article views: 964 Times PDF downloads: 8 Times Cited by: 0 Times

History

Manuscript received: 06 November 2012 Manuscript revised: 23 January 2013 Online: Published: 01 July 2013

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误