J. Semicond. > Volume 34 > Issue 7 > Article Number: 073004

First-principle study on the electronic and optical properties of the anatase TiO2 (101) surface

Ying Yang , Qing Feng , , Weihua Wang and Yin Wang

+ Author Affiliations + Find other works by these authors

PDF

Abstract: The TiO2 (101) surface was studied using the plane-wave ultrasoft pseudopotential method based on the density functional theory, with emphasis on the structure, surface energy, band structure, density of states, and charge population. The anatase TiO2 (101) crystal surface structure, whose outermost and second layers were terminated by twofold coordinated oxygen atoms and fivefold coordinated titanium atoms, was found to be much more stable. The surface energy of the 18-layer atoms model was 0.580 J/m2. The surface electronic structure was similar to that of the bulk and no surface state. Compared with the bulk structure, the band gap increased 0.36 eV, the Ti5c-O2c bond lengths reduced 0.171 Å after relaxation, and the charges of the surface were transferred to the body. Analysis of the optical properties of the TiO2 (101) surface showed that it did not absorb in the low-energy region. An absorption edge in the ultraviolet region corresponding to the energy of 3.06 eV was found.

Key words: anataseTiO2 (101) surfacefirst-principlesdensity functional theoryelectronic structure

Abstract: The TiO2 (101) surface was studied using the plane-wave ultrasoft pseudopotential method based on the density functional theory, with emphasis on the structure, surface energy, band structure, density of states, and charge population. The anatase TiO2 (101) crystal surface structure, whose outermost and second layers were terminated by twofold coordinated oxygen atoms and fivefold coordinated titanium atoms, was found to be much more stable. The surface energy of the 18-layer atoms model was 0.580 J/m2. The surface electronic structure was similar to that of the bulk and no surface state. Compared with the bulk structure, the band gap increased 0.36 eV, the Ti5c-O2c bond lengths reduced 0.171 Å after relaxation, and the charges of the surface were transferred to the body. Analysis of the optical properties of the TiO2 (101) surface showed that it did not absorb in the low-energy region. An absorption edge in the ultraviolet region corresponding to the energy of 3.06 eV was found.

Key words: anataseTiO2 (101) surfacefirst-principlesdensity functional theoryelectronic structure



References:

[1]

Tao Q, Wang J. Application of TiO2 photocatalytic oxidation technology to gas-phase contaminants degradation[J]. Safety and Environmental Engineering, 2010, 17(5): 26.

[2]

Hebenstreit W, Ruzycki N, Herman G S. Scanning tunneling microscopy investigation of the TiO2 anatase (101) surfaces[J]. Phys Rev B, 2000, 62: 16334. doi: 10.1103/PhysRevB.62.R16334

[3]

Hengerer R, Bolliger B, Erbudak M. Structure and stability of the anatase TiO2 (101) and (001) surfaces[J]. Surf Sci, 2000, 460: 162. doi: 10.1016/S0039-6028(00)00527-6

[4]

Ma Xinguo, Tang Chaoqun, Huang Jinqiu. First-principle calculations on the geometry and relaxation structure of anatase TiO2 (101) surface[J]. Acta Physica Sinica, 2006, 55(8): 4208.

[5]

Ma Xinguo, Jiang Jianjun, Liang Pei. Theoretical study of native point defects on anatase TiO2 (101) surface[J]. Acta Physica Sinica, 2008, 57: 3120.

[6]

Finazzi E, Valentin C D, Pacchioni A S G. First principles study of nitrogen doping at the anatase TiO2 (101) surface[J]. Phys Chem C, 2007, 111(26): 9275. doi: 10.1021/jp071186s

[7]

Chen Qili, Tang Chaoqun. First-principles calculations on electronic structures of N/F-doped and N-F-codoped TiO2 anatase (101) surfaces[J]. Acta Physico-Chimica Sinica, 2009, 25(5): 915.

[8]

Chen Q, Tang C, Zheng G. First-principles study of TiO2 anatase (101) surfaces doped with N[J]. Phys B, 2009, 404: 1074. doi: 10.1016/j.physb.2008.11.032

[9]

Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys Rev B, 1999, 59: 1758.

[10]

Zhao Zongyan, Liu Qingju, Zhu Zhongqi. First-principles calculation of electronic structure and optical properties of anatase TiO2[J]. Chinese Journal of Semiconductors, 2007, 28(10): 1555.

[11]

Perdew J P, Chevary J A, Vosko S H. Atoms, molecules, solids, and surfaces:applications of the generalized gradient approximation for exchange and correlation[J]. Phys Rev B, 1992, 46: 6671. doi: 10.1103/PhysRevB.46.6671

[12]

Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Phys Rev B, 1992, 45: 13244. doi: 10.1103/PhysRevB.45.13244

[13]

Hammer B, Hansen L B, Norskov J K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functional[J]. Phys Rev B, 1999, 59: 7413. doi: 10.1103/PhysRevB.59.7413

[14]

Wu Z, Cohen R E. A more accurate generalized gradient approximation for solids[J]. Phys Rev B, 2006, 73: 235116. doi: 10.1103/PhysRevB.73.235116

[15]

Perdew J P, Ruzsinszky A, Csonka G. Restoring the density-gradient expansion for exchange in solids and surfaces[J]. Phys Rev Lett, 2008, 100: 136406. doi: 10.1103/PhysRevLett.100.136406

[16]

Ceperley D M, Alder B J. Ground state of the electron gas by a stochastic method[J]. Phys Rev Lett, 1980, 45: 566. doi: 10.1103/PhysRevLett.45.566

[17]

Diebold U. The surface science of titanium dioxide[J]. Surf Sci Rep, 2003, 48: 53. doi: 10.1016/S0167-5729(02)00100-0

[18]

Segall M D, Lindan P L D, Probert M J. First-principles simulation:ideas, illustrations and the CASTEP code[J]. Journal of Physics:Condensed Matter, 2002, 14: 2717. doi: 10.1088/0953-8984/14/11/301

[1]

Tao Q, Wang J. Application of TiO2 photocatalytic oxidation technology to gas-phase contaminants degradation[J]. Safety and Environmental Engineering, 2010, 17(5): 26.

[2]

Hebenstreit W, Ruzycki N, Herman G S. Scanning tunneling microscopy investigation of the TiO2 anatase (101) surfaces[J]. Phys Rev B, 2000, 62: 16334. doi: 10.1103/PhysRevB.62.R16334

[3]

Hengerer R, Bolliger B, Erbudak M. Structure and stability of the anatase TiO2 (101) and (001) surfaces[J]. Surf Sci, 2000, 460: 162. doi: 10.1016/S0039-6028(00)00527-6

[4]

Ma Xinguo, Tang Chaoqun, Huang Jinqiu. First-principle calculations on the geometry and relaxation structure of anatase TiO2 (101) surface[J]. Acta Physica Sinica, 2006, 55(8): 4208.

[5]

Ma Xinguo, Jiang Jianjun, Liang Pei. Theoretical study of native point defects on anatase TiO2 (101) surface[J]. Acta Physica Sinica, 2008, 57: 3120.

[6]

Finazzi E, Valentin C D, Pacchioni A S G. First principles study of nitrogen doping at the anatase TiO2 (101) surface[J]. Phys Chem C, 2007, 111(26): 9275. doi: 10.1021/jp071186s

[7]

Chen Qili, Tang Chaoqun. First-principles calculations on electronic structures of N/F-doped and N-F-codoped TiO2 anatase (101) surfaces[J]. Acta Physico-Chimica Sinica, 2009, 25(5): 915.

[8]

Chen Q, Tang C, Zheng G. First-principles study of TiO2 anatase (101) surfaces doped with N[J]. Phys B, 2009, 404: 1074. doi: 10.1016/j.physb.2008.11.032

[9]

Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys Rev B, 1999, 59: 1758.

[10]

Zhao Zongyan, Liu Qingju, Zhu Zhongqi. First-principles calculation of electronic structure and optical properties of anatase TiO2[J]. Chinese Journal of Semiconductors, 2007, 28(10): 1555.

[11]

Perdew J P, Chevary J A, Vosko S H. Atoms, molecules, solids, and surfaces:applications of the generalized gradient approximation for exchange and correlation[J]. Phys Rev B, 1992, 46: 6671. doi: 10.1103/PhysRevB.46.6671

[12]

Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Phys Rev B, 1992, 45: 13244. doi: 10.1103/PhysRevB.45.13244

[13]

Hammer B, Hansen L B, Norskov J K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functional[J]. Phys Rev B, 1999, 59: 7413. doi: 10.1103/PhysRevB.59.7413

[14]

Wu Z, Cohen R E. A more accurate generalized gradient approximation for solids[J]. Phys Rev B, 2006, 73: 235116. doi: 10.1103/PhysRevB.73.235116

[15]

Perdew J P, Ruzsinszky A, Csonka G. Restoring the density-gradient expansion for exchange in solids and surfaces[J]. Phys Rev Lett, 2008, 100: 136406. doi: 10.1103/PhysRevLett.100.136406

[16]

Ceperley D M, Alder B J. Ground state of the electron gas by a stochastic method[J]. Phys Rev Lett, 1980, 45: 566. doi: 10.1103/PhysRevLett.45.566

[17]

Diebold U. The surface science of titanium dioxide[J]. Surf Sci Rep, 2003, 48: 53. doi: 10.1016/S0167-5729(02)00100-0

[18]

Segall M D, Lindan P L D, Probert M J. First-principles simulation:ideas, illustrations and the CASTEP code[J]. Journal of Physics:Condensed Matter, 2002, 14: 2717. doi: 10.1088/0953-8984/14/11/301

[1]

Zhao Zongyan, Liu Qingju, Zhu Zhongqi, Zhang Jin. First-Principles Calculation of Electronic Structure and Optical Properties of Anatase TiO2. J. Semicond., 2007, 28(10): 1555.

[2]

Wenhui Xu, Xinguo Ma, Tong Wu, Zhiqi He, Huihu Wang, Chuyun Huang. First-principles study on the synergistic effects of codoped anatase TiO2 photocatalysts codoped with N/V or C/Cr. J. Semicond., 2014, 35(10): 102002. doi: 10.1088/1674-4926/35/10/102002

[3]

Zhuomao Zhu, Baoan Bian, Haifeng Shi. Effect of N and Fe codoping on the electronic structure and optical properties of TiO2 from first-principles study. J. Semicond., 2015, 36(10): 102003. doi: 10.1088/1674-4926/36/10/102003

[4]

Yuxiang Qin, Deyan Hua, Xiao Li. First principles study on the surface-and orientation-dependent electronic structure of a WO3 nanowire. J. Semicond., 2013, 34(6): 062002. doi: 10.1088/1674-4926/34/6/062002

[5]

Jinliang Yan, Chong Qu. Electronic structure and optical properties of F-doped β-Ga2O3 from first principles calculations. J. Semicond., 2016, 37(4): 042002. doi: 10.1088/1674-4926/37/4/042002

[6]

Guoping Luo, Yingmei Bian, Ruifeng Wu, Guoxia Lai, Xiangfu Xu, Weiwei Zhang, Xingyuan Chen. First principles study of the electronic structure and photovoltaic properties of β-CuGaO2 with MBJ + U approach. J. Semicond., 2020, 41(10): 102102. doi: 10.1088/1674-4926/41/10/102102

[7]

Zuo Chunying, Wen Jing, Zhong Cheng. First-principles study of the electronic structures and optical properties of C–F–Be doped wurtzite ZnO. J. Semicond., 2012, 33(7): 072001. doi: 10.1088/1674-4926/33/7/072001

[8]

Yan Wanjun, Xie Quan. First Principle Calculation of the Electronic Structure and Optical Properties of Impurity-Doped β-FeSi2 Semiconductors. J. Semicond., 2008, 29(6): 1141.

[9]

Dong Chen, Yuping Cang, Yongsong Luo. Electronic structures and phase transition characters of β-, P61-, P62- and δ-Si3N4 under extreme conditions: a density functional theory study. J. Semicond., 2015, 36(2): 023003. doi: 10.1088/1674-4926/36/2/023003

[10]

Yuping Cang, Xiaoling Yao, Dong Chen, Fan Yang, Huiming Yang. First-principles study on the electronic, elastic and thermodynamic properties of three novel germanium nitrides. J. Semicond., 2016, 37(7): 072002. doi: 10.1088/1674-4926/37/7/072002

[11]

Minyou He, Liang Chen, Lingai Su, Lin Yin, Yunsheng Qian. Comparative research on the influence of varied Al component on the active layer of AlGaN photocathode. J. Semicond., 2017, 38(6): 063004. doi: 10.1088/1674-4926/38/6/063004

[12]

Haitao Li, Jun Qian, Fangfang Han, Tinghui Li. Density functional theory studies of the optical properties of a β-FeSi2 (100)/Si (001) interface at high pressure. J. Semicond., 2013, 34(7): 072003. doi: 10.1088/1674-4926/34/7/072003

[13]

Zhonghua Yang, Guili Liu, Yingdong Qu, Rongde Li. First-principle study on energy gap of CNT superlattice structure. J. Semicond., 2015, 36(10): 102002. doi: 10.1088/1674-4926/36/10/102002

[14]

Yun Jiangni, Zhang Zhiyong, Deng Zhouhu, Zhang Fuchun. First-Principle Calculation of the Electronic Structure of Sb-Doped SrTiO3. J. Semicond., 2006, 27(9): 1537.

[15]

Xinguo Ma, Jie Yan, Na Liu, Lin Zhu, Bei Wang, Chuyun Huang, Hui Lü. Effect of relaxation on the energetics and electronic structure of clean Ag3PO4(111) surface. J. Semicond., 2016, 37(3): 033001. doi: 10.1088/1674-4926/37/3/033001

[16]

Guipeng Sun, Jinliang Yan, Peijiang Niu, Delan Meng. Electronic structure and optical property of p-type Zn-doped SnO2 with Sn vacancy. J. Semicond., 2016, 37(2): 023005. doi: 10.1088/1674-4926/37/2/023005

[17]

Azeem Nabi, Zarmeena Akhtar, Tahir Iqbal, Atif Ali, Arshad Javid. The electronic and magnetic properties of wurtzite Mn:CdS, Cr:CdS and Mn:Cr:CdS: first principles calculations. J. Semicond., 2017, 38(7): 073001. doi: 10.1088/1674-4926/38/7/073001

[18]

Shujuan Jiao, Jinliang Yan, Guipeng Sun, Yinnü Zhao. Electronic structures and optical properties of Nb-doped SrTiO3 from first principles. J. Semicond., 2016, 37(7): 072001. doi: 10.1088/1674-4926/37/7/072001

[19]

Su Xiyu, Zhi Xiaofen, Hou Qinying, Cheng Wei, Liu Jiaxue. First principles study of the Be–C co-doped MgB2 system. J. Semicond., 2009, 30(11): 112001. doi: 10.1088/1674-4926/30/11/112001

[20]

Zongyan Zhao, Xiang Zhao. Electronic, optical, and mechanical properties of Cu2ZnSnS4 with four crystal structures. J. Semicond., 2015, 36(8): 083004. doi: 10.1088/1674-4926/36/8/083004

Search

Advanced Search >>

GET CITATION

Y Yang, Q Feng, W H Wang, Y Wang. First-principle study on the electronic and optical properties of the anatase TiO2 (101) surface[J]. J. Semicond., 2013, 34(7): 073004. doi: 10.1088/1674-4926/34/7/073004.

Export: BibTex EndNote

Article Metrics

Article views: 1156 Times PDF downloads: 14 Times Cited by: 0 Times

History

Manuscript received: 29 October 2012 Manuscript revised: 19 February 2013 Online: Published: 01 July 2013

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误