J. Semicond. > Volume 34 > Issue 7 > Article Number: 075003

A very low noise preamplifier for extremely low frequency magnetic antenna

Shimin Feng , , Suihua Zhou and Zhiyi Chen

+ Author Affilications + Find other works by these authors

PDF

Abstract: Besides the electrode-pair antenna, the magnetic antenna is also used for the extremely low frequency (ELF) submarine communication. To receive the weak ELF signals, the structure of a small sized magnetic antenna determines its specific electrical characteristics. The ELF magnetic antenna shows high internal resistance, alternating-current impedance, and a resonance frequency near the operating bandwidth. In accordance with the electrical characteristics of ELF magnetic antenna, a low noise preamplifier and frequency compensation circuit were designed and realized. The preamplifier is a three-stage negative feedback circuit, which is composed of parallel JFET, common-emitter amplifier with a Darlington structure and a common-collector amplifier in push-pull connection. And a frequency compensation circuit is cascaded to compensate the characteristic in low frequency range. In the operating bandwidth f=30-200 Hz, the circuit has a gain of 39.4 dB. The equivalent input noise is 1.97 nV/$\sqrt {{\text{Hz}}} $ and the frequency response keeps flat in operating bandwidth. The proposed preamplifier of the ELF magnetic antenna performs well in receiving ELF signals.

Key words: ELF magnetic antennapreamplifierlow noisefrequency compensation

Abstract: Besides the electrode-pair antenna, the magnetic antenna is also used for the extremely low frequency (ELF) submarine communication. To receive the weak ELF signals, the structure of a small sized magnetic antenna determines its specific electrical characteristics. The ELF magnetic antenna shows high internal resistance, alternating-current impedance, and a resonance frequency near the operating bandwidth. In accordance with the electrical characteristics of ELF magnetic antenna, a low noise preamplifier and frequency compensation circuit were designed and realized. The preamplifier is a three-stage negative feedback circuit, which is composed of parallel JFET, common-emitter amplifier with a Darlington structure and a common-collector amplifier in push-pull connection. And a frequency compensation circuit is cascaded to compensate the characteristic in low frequency range. In the operating bandwidth f=30-200 Hz, the circuit has a gain of 39.4 dB. The equivalent input noise is 1.97 nV/$\sqrt {{\text{Hz}}} $ and the frequency response keeps flat in operating bandwidth. The proposed preamplifier of the ELF magnetic antenna performs well in receiving ELF signals.

Key words: ELF magnetic antennapreamplifierlow noisefrequency compensation



References:

[1]

Dong J H. Research on the ELF preamplifier of the submarine towed loop antenna[J]. Wuhan:Naval University of Engineering, 2010.

[2]

Tumanski S. Induction coil sensors—a review[J]. Measurement Science and Technology, 2007, 18: R31. doi: 10.1088/0957-0233/18/3/R01

[3]

Ju H J, Zhu W H, Fang G Y. A review on ferromagnetic induction coil sensors[J]. Progress in Geophys, 2010, 25(5): 1870.

[4]

Prance R, Clark T, Prance H. Ultra low noise induction magnetometer for variable temperature operation[J]. Sensors and Actuators A:Physical, 2000, 85(1-3): 361. doi: 10.1016/S0924-4247(00)00375-7

[5]

Seran H C, Fergeau P. An optimized low frequency three axis search coil for space research[J]. Review of Scientific Instruments, 2005, 76: 1.

[6]

Coillot C, Moutoussamy J, Leroy P. Improvements of the design of search coil magnetometer for space experiments[J]. Sensor Lett, 2007, 5: 1.

[7]

Coillot C, Moutoussamy J, Lebourgeois R. Principle and performance of a dual-band search coil magnetometer:a new instrument to investigate fluctuating magnetic fields in space[J]. IEEE Sensors J, 2010, 10(2): 255. doi: 10.1109/JSEN.2009.2030977

[8]

Coillot C, Leroy P. Induction magnetometers principle, modeling and ways of improvement[J]. Magnetic Sensors, 2012: 45.

[9]

Gao J Z. Weak signal detection[J]. Beijing:Tsinghua University Press, 2004: 49.

[10]

Rhouni A, Sou G, Leroy P. A very low 1/f noise ASIC preamplifier for high sensitivity search-coil magnetometers[J]. Proceedings of EMSA'10 Conference, Turkey, 2010.

[11]

Liu Y G, Luo P, Zhang B. A three-stage amplifier with single miller-capacitor frequency compensation[J]. Chinese Journal of Semiconductors, 2007, 28(10): 1636.

[12]

Ma H F, Zhou F, Niu Q. Nested miller active-capacitor frequency compensation for low-power three-stage amplifiers[J]. Journal of Semiconductors, 2008, 29(9): 1698.

[1]

Dong J H. Research on the ELF preamplifier of the submarine towed loop antenna[J]. Wuhan:Naval University of Engineering, 2010.

[2]

Tumanski S. Induction coil sensors—a review[J]. Measurement Science and Technology, 2007, 18: R31. doi: 10.1088/0957-0233/18/3/R01

[3]

Ju H J, Zhu W H, Fang G Y. A review on ferromagnetic induction coil sensors[J]. Progress in Geophys, 2010, 25(5): 1870.

[4]

Prance R, Clark T, Prance H. Ultra low noise induction magnetometer for variable temperature operation[J]. Sensors and Actuators A:Physical, 2000, 85(1-3): 361. doi: 10.1016/S0924-4247(00)00375-7

[5]

Seran H C, Fergeau P. An optimized low frequency three axis search coil for space research[J]. Review of Scientific Instruments, 2005, 76: 1.

[6]

Coillot C, Moutoussamy J, Leroy P. Improvements of the design of search coil magnetometer for space experiments[J]. Sensor Lett, 2007, 5: 1.

[7]

Coillot C, Moutoussamy J, Lebourgeois R. Principle and performance of a dual-band search coil magnetometer:a new instrument to investigate fluctuating magnetic fields in space[J]. IEEE Sensors J, 2010, 10(2): 255. doi: 10.1109/JSEN.2009.2030977

[8]

Coillot C, Leroy P. Induction magnetometers principle, modeling and ways of improvement[J]. Magnetic Sensors, 2012: 45.

[9]

Gao J Z. Weak signal detection[J]. Beijing:Tsinghua University Press, 2004: 49.

[10]

Rhouni A, Sou G, Leroy P. A very low 1/f noise ASIC preamplifier for high sensitivity search-coil magnetometers[J]. Proceedings of EMSA'10 Conference, Turkey, 2010.

[11]

Liu Y G, Luo P, Zhang B. A three-stage amplifier with single miller-capacitor frequency compensation[J]. Chinese Journal of Semiconductors, 2007, 28(10): 1636.

[12]

Ma H F, Zhou F, Niu Q. Nested miller active-capacitor frequency compensation for low-power three-stage amplifiers[J]. Journal of Semiconductors, 2008, 29(9): 1698.

[1]

Ma Haifeng, Zhou Feng, Niu Qi, Lü Changhui. Nested Miller Active-Capacitor Frequency Compensation for Low-Power Three-Stage Amplifiers. J. Semicond., 2008, 29(9): 1698.

[2]

Yu Wang, Jing Liu, Na Yan, Hao Min. A low-noise widely tunable Gm-C filter with frequency calibration. J. Semicond., 2016, 37(9): 095002. doi: 10.1088/1674-4926/37/9/095002

[3]

Sui Xiaohong, Liu Jinbin, Gu Ming, Pei Weihua, Chen Hongda. Simulation of a Monolithic Integrated CMOS Preamplifier for Neural Recordings. J. Semicond., 2005, 26(12): 2275.

[4]

Jiao Shilong, Yang Xianming, Zhao Liang, Li Hui, Chen Zhenlong, Chen Tangsheng, Shao Kai, Ye Yutang. A 10Gb/s GaAs PHEMT High Gain Preamplifier for Optical Receivers. J. Semicond., 2007, 28(12): 1902.

[5]

Wang Xiaoxia, Wang Zhigong. High performance power-configurable preamplifier in a high-density parallel optical receiver. J. Semicond., 2012, 33(1): 015004. doi: 10.1088/1674-4926/33/1/015004

[6]

Wang Xiaoyu, Yang Haigang, Li Fanyang, Yin Tao, Liu Fei. A 1.4-V 48-μW current-mode front-end circuit for analog hearing aids with frequency compensation. J. Semicond., 2012, 33(10): 105004. doi: 10.1088/1674-4926/33/10/105004

[7]

Yanchao Wang, Keren Ke, Wenhui Qin, Yajie Qin, Ting Yi, Zhiliang Hong. A low power low noise analog front end for portable healthcare system. J. Semicond., 2015, 36(10): 105008. doi: 10.1088/1674-4926/36/10/105008

[8]

Ran Fang, Wengao Lu, Guannan Wang, Tingting Tao, Yacong Zhang, Zhongjian Chen, Dunshan Yu. A low-noise high-linearity interface ASIC for MEMS gyroscopes. J. Semicond., 2013, 34(12): 125009. doi: 10.1088/1674-4926/34/12/125009

[9]

Wang Haishi, Zhang Bo. Design of low noise class D amplifiers using an integrated filter. J. Semicond., 2012, 33(11): 115002. doi: 10.1088/1674-4926/33/11/115002

[10]

Mao Cui, He Lenian, Yan Xiaolang. A Novel Fully On-Chip CMOS Low-Dropout Linear Regulator with Ultra Low Noise. J. Semicond., 2008, 29(8): 1602.

[11]

Yin Tao, Yang Haigang, Liu Ke. A Low-Noise,Low-Offset Chopper Amplifier for Micro-Sensor Readout Circuit. J. Semicond., 2007, 28(5): 796.

[12]

Yun Gui, Xu Zhang, Yuan Wang, Ming Liu, Weihua Pei, Kai Liang, Suibiao Huang, Bin Li, Hongda Chen. A multi-channel fully differential programmable integrated circuit for neural recording application. J. Semicond., 2013, 34(10): 105009. doi: 10.1088/1674-4926/34/10/105009

[13]

Zhang Ying, Wang Zhigong, Xu Jian, Luo Yin. Design of a low noise distributed amplifier with adjustable gain control in 0.15 μm GaAs PHEMT. J. Semicond., 2012, 33(3): 035003. doi: 10.1088/1674-4926/33/3/035003

[14]

Xu Wang, Hongyan Yang, Ying Yuan, Wuchen Wu. A low noise multi-channel readout IC for X-ray cargo inspection. J. Semicond., 2013, 34(4): 045011. doi: 10.1088/1674-4926/34/4/045011

[15]

Cheng Zhiqun, Zhou Xiaopeng, Chen J Kevin. Low Noise Distributed Amplifiers Using a Novel Composite-Channel GaN HEMTs. J. Semicond., 2008, 29(12): 2297.

[16]

Zhiming Wang, Zhuobin Zhao, Zhifu Hu, Hui Huang, Yuxing Cui, Xiguo Sun, Jianghui Mo, Liang Li, Xingchang Fu, Xin Lü. Design and implementation of 83-nm low noise InP-based InAlAs/InGaAs PHEMTs. J. Semicond., 2015, 36(8): 084002. doi: 10.1088/1674-4926/36/8/084002

[17]

Xue Yang, Hao Yang, Haiying Zhang, Xinnian Zheng, Zhiwei Dai, Zhiqiang Li, Zebao Du. A monolithic 60 GHz balanced low noise amplifier. J. Semicond., 2015, 36(4): 045003. doi: 10.1088/1674-4926/36/4/045003

[18]

Wei Benfu, Yuan Guoshun. Design of a Low Noise,Low Power Audio Power Amplifierfor Driving Headphones. J. Semicond., 2006, 27(S1): 29.

[19]

Qiang Fu, Xipeng Di, Liang Yin, Xiaowei Liu. A low noise interface circuit design of micro-machined gyroscope. J. Semicond., 2017, 38(7): 075005. doi: 10.1088/1674-4926/38/7/075005

[20]

Geng Zhiqing, Wang Haiyong, Wu Nanjian. A novel noise optimization technique for inductively degenerated CMOS LNA. J. Semicond., 2009, 30(10): 105015. doi: 10.1088/1674-4926/30/10/105015

Search

Advanced Search >>

GET CITATION

S M Feng, S H Zhou, Z Y Chen. A very low noise preamplifier for extremely low frequency magnetic antenna[J]. J. Semicond., 2013, 34(7): 075003. doi: 10.1088/1674-4926/34/7/075003.

Export: BibTex EndNote

Article Metrics

Article views: 995 Times PDF downloads: 34 Times Cited by: 0 Times

History

Manuscript received: 31 October 2012 Manuscript revised: 18 February 2013 Online: Published: 01 July 2013

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误