J. Semicond. > Volume 34 > Issue 7 > Article Number: 075005

A 16.9 dBm InP DHBT W-band power amplifier with more than 20 dB gain

Hongfei Yao , Yuxiong Cao , Danyu Wu , Xiaoxi Ning , Yongbo Su and Zhi Jin ,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: A two-stage MMIC power amplifier has been realized by use of a 1-μm InP double heterojunction bipolar transistor (DHBT). The cascode structure, low-loss matching networks, and low-parasite cell units enhance the power gain. The optimum load impedance is determined from load-pull simulation. A coplanar waveguide transmission line is adopted for its ease of fabrication. The chip size is 1.5$ \times $1.7 mm2 with the emitter area of 16$ \times $1 μm$ \times $15 μm in the output stage. Measurements show that small signal gain is more than 20 dB over 75.5-84.5 GHz and the saturated power is 16.9 dBm @ 79 GHz with gain of 15.2 dB. The high power gain makes it very suitable for medium power amplification.

Key words: power amplifierW-bandDHBTInP

Abstract: A two-stage MMIC power amplifier has been realized by use of a 1-μm InP double heterojunction bipolar transistor (DHBT). The cascode structure, low-loss matching networks, and low-parasite cell units enhance the power gain. The optimum load impedance is determined from load-pull simulation. A coplanar waveguide transmission line is adopted for its ease of fabrication. The chip size is 1.5$ \times $1.7 mm2 with the emitter area of 16$ \times $1 μm$ \times $15 μm in the output stage. Measurements show that small signal gain is more than 20 dB over 75.5-84.5 GHz and the saturated power is 16.9 dBm @ 79 GHz with gain of 15.2 dB. The high power gain makes it very suitable for medium power amplification.

Key words: power amplifierW-bandDHBTInP



References:

[1]

Brown A, Brown K, Chen J. W-band GaN power amplifier MMICs[J]. IEEE MTT-S Int Dig, 2011: 1.

[2]

Ingram, Chen, Kraus. A 427 mW, 20% compact W-band InP HEMT MMIC power amplifier[J]. IEEE RFIC Symp, 1999: 95.

[3]

Maas S, Nelson B, Tait D. Intermodulation distortion in heterojunction bipolar transistors[J]. IEEE Trans Microw Theory Tech, 1992, 40(3): 442. doi: 10.1109/22.121719

[4]

Wei Y, Urteaga M, Griffith Z. 75 GHz 80 mW InP DHBT power amplifier[J]. IEEE MTT-S Int Dig, 2003: 919.

[5]

Ellis G A, Kurdoghlian A, Bowen R. W-band InP DHBT MMIC power amplifiers[J]. IEEE MTT-S Int Dig, 2004: 231.

[6]

Paidi V K, Griffith Z, Wei Y. G-band (140-220 GHz) and W-band (75-110 GHz) InP DHBT medium power amplifiers[J]. IEEE Trans Microw Theory Tech, 2005, 53(2): 598. doi: 10.1109/TMTT.2004.840662

[7]

O'Sullivan T, Le M, Partyka P. Design of a 70 GHz power amplifier using a digital InP HBT process[J]. IEEE Bipolar/BiCMOS Circuits and Technology Meeting, 2007: 214.

[8]

Cao Y X, Su Y B, Wu D Y. A 75 GHz 13.92 dBm InP DHBT cascode power amplifier[J]. J Infrared Millim Wave, 2012, 31(4): 294. doi: 10.3724/SP.J.1010.2012.00294

[9]

Jin Z, Su Y B, Cheng W. High-speed InGaAs/InP double heterostructure bipolar transistor with high breakdown voltage[J]. Chin Phys Lett, 2008, 25(7): 2683. doi: 10.1088/0256-307X/25/7/097

[10]

Jin Z, Su Y B, Cheng W. High current multi-finger InGaAs/InP double heterojunction bipolar transistor with the maximum oscillation frequency 253 GHz[J]. Chin Phys Lett, 2008, 25(8): 3075. doi: 10.1088/0256-307X/25/8/091

[11]

Monzon C. A small dual-frequency transformer in two sections[J]. IEEE Trans Microw Theory Tech, 2003, 51(4): 1157. doi: 10.1109/TMTT.2003.809675

[12]

Cao Y X, Jin Z, Ge J. A symbolically defined InP double heterojunction bipolar transistor large-signal model[J]. Journal of Semiconductors, 2009, 30(12): 37.

[13]

Bohannan K, Sercu J, Moore J. Demystifying ports \begin{document}$ times $\end{document} grounds in ADS momentum. http://www.agilent.com. (20011-08-26)

[14]

O'Sullivan T. Design of millimeter-wave power amplifiers using InP heterojunction bipolar transistors[J]. San Diego:University of California, 2009.

[15]

Ge J, Cao Y X, Wu D Y. A combined model with electro-thermal coupling and electromagnetic simulation for microwave multi-finger InP-based DHBTs[J]. IEEE Trans Electron Devices, 2012, 59(3): 673. doi: 10.1109/TED.2011.2177987

[16]

Wei Y. Wide bandwidth power heterojunction bipolar transistor and amplifiers[J]. Santa Barbara:University of California, 2003.

[17]

Wu Y, Li Y, Li S L. A dual-frequency transformer for complex impedances with two unequal sections[J]. IEEE Microw Wireless Compon Lett, 2009, 19(2): 77. doi: 10.1109/LMWC.2008.2011315

[18]

Freitag R G. A unified analysis of MMIC power amplifier stability[J]. IEEE MTT-S Int Dig, 1992: 297.

[19]

Platzker A, Struble W, Hetzler K T. Instabilities diagnosis and the role of K in microwave circuits[J]. IEEE MTT-S Int Dig, 1993: 1185.

[20]

Struble W, Platzker A. A rigorous yet simple method for determining stability of linear N-port networks[J]. GaAs IC Symp Dig, 1993: 1.

[21]

Jackson R W. Rollett proviso in the stability of linear microwave circuits—a tutorial[J]. IEEE Trans Microw Theory Tech, 2006, 40(3): 993.

[22]

De Hek A P. Design, realisation and test of GaAs-based monolithic integrated X-band high-power amplifiers[J]. Eindhoven:Technische Universiteit Eindhoven, 2002.

[1]

Brown A, Brown K, Chen J. W-band GaN power amplifier MMICs[J]. IEEE MTT-S Int Dig, 2011: 1.

[2]

Ingram, Chen, Kraus. A 427 mW, 20% compact W-band InP HEMT MMIC power amplifier[J]. IEEE RFIC Symp, 1999: 95.

[3]

Maas S, Nelson B, Tait D. Intermodulation distortion in heterojunction bipolar transistors[J]. IEEE Trans Microw Theory Tech, 1992, 40(3): 442. doi: 10.1109/22.121719

[4]

Wei Y, Urteaga M, Griffith Z. 75 GHz 80 mW InP DHBT power amplifier[J]. IEEE MTT-S Int Dig, 2003: 919.

[5]

Ellis G A, Kurdoghlian A, Bowen R. W-band InP DHBT MMIC power amplifiers[J]. IEEE MTT-S Int Dig, 2004: 231.

[6]

Paidi V K, Griffith Z, Wei Y. G-band (140-220 GHz) and W-band (75-110 GHz) InP DHBT medium power amplifiers[J]. IEEE Trans Microw Theory Tech, 2005, 53(2): 598. doi: 10.1109/TMTT.2004.840662

[7]

O'Sullivan T, Le M, Partyka P. Design of a 70 GHz power amplifier using a digital InP HBT process[J]. IEEE Bipolar/BiCMOS Circuits and Technology Meeting, 2007: 214.

[8]

Cao Y X, Su Y B, Wu D Y. A 75 GHz 13.92 dBm InP DHBT cascode power amplifier[J]. J Infrared Millim Wave, 2012, 31(4): 294. doi: 10.3724/SP.J.1010.2012.00294

[9]

Jin Z, Su Y B, Cheng W. High-speed InGaAs/InP double heterostructure bipolar transistor with high breakdown voltage[J]. Chin Phys Lett, 2008, 25(7): 2683. doi: 10.1088/0256-307X/25/7/097

[10]

Jin Z, Su Y B, Cheng W. High current multi-finger InGaAs/InP double heterojunction bipolar transistor with the maximum oscillation frequency 253 GHz[J]. Chin Phys Lett, 2008, 25(8): 3075. doi: 10.1088/0256-307X/25/8/091

[11]

Monzon C. A small dual-frequency transformer in two sections[J]. IEEE Trans Microw Theory Tech, 2003, 51(4): 1157. doi: 10.1109/TMTT.2003.809675

[12]

Cao Y X, Jin Z, Ge J. A symbolically defined InP double heterojunction bipolar transistor large-signal model[J]. Journal of Semiconductors, 2009, 30(12): 37.

[13]

Bohannan K, Sercu J, Moore J. Demystifying ports \begin{document}$ times $\end{document} grounds in ADS momentum. http://www.agilent.com. (20011-08-26)

[14]

O'Sullivan T. Design of millimeter-wave power amplifiers using InP heterojunction bipolar transistors[J]. San Diego:University of California, 2009.

[15]

Ge J, Cao Y X, Wu D Y. A combined model with electro-thermal coupling and electromagnetic simulation for microwave multi-finger InP-based DHBTs[J]. IEEE Trans Electron Devices, 2012, 59(3): 673. doi: 10.1109/TED.2011.2177987

[16]

Wei Y. Wide bandwidth power heterojunction bipolar transistor and amplifiers[J]. Santa Barbara:University of California, 2003.

[17]

Wu Y, Li Y, Li S L. A dual-frequency transformer for complex impedances with two unequal sections[J]. IEEE Microw Wireless Compon Lett, 2009, 19(2): 77. doi: 10.1109/LMWC.2008.2011315

[18]

Freitag R G. A unified analysis of MMIC power amplifier stability[J]. IEEE MTT-S Int Dig, 1992: 297.

[19]

Platzker A, Struble W, Hetzler K T. Instabilities diagnosis and the role of K in microwave circuits[J]. IEEE MTT-S Int Dig, 1993: 1185.

[20]

Struble W, Platzker A. A rigorous yet simple method for determining stability of linear N-port networks[J]. GaAs IC Symp Dig, 1993: 1.

[21]

Jackson R W. Rollett proviso in the stability of linear microwave circuits—a tutorial[J]. IEEE Trans Microw Theory Tech, 2006, 40(3): 993.

[22]

De Hek A P. Design, realisation and test of GaAs-based monolithic integrated X-band high-power amplifiers[J]. Eindhoven:Technische Universiteit Eindhoven, 2002.

[1]

Hongfei Yao, Xiantai Wang, Danyu Wu, Yongbo Su, Yuxiong Cao, Ji Ge, Xiaoxi Ning, Zhi Jin. W-band push-push monolithic frequency doubler in 1-μm InP DHBT technology. J. Semicond., 2013, 34(9): 095006. doi: 10.1088/1674-4926/34/9/095006

[2]

Peng Xu, Xubo Song, Yuanjie Lü, Yuangang Wang, Shaobo Dun, Jiayun Yin, Yulong Fang, Guodong Gu, Zhihong Feng, Shujun Cai. W-band GaN MMIC PA with 257 mW output power at 86.5 GHz. J. Semicond., 2015, 36(8): 085009. doi: 10.1088/1674-4926/36/8/085009

[3]

Shuo Yang, Lijun Zhang, Jun Fu, Xiaobin Zhang. On-chip bias circuit for W-band silicon–germanium power amplifier. J. Semicond., 2018, 39(12): 125005. doi: 10.1088/1674-4926/39/12/125005

[4]

Hua Zhao, Hongfei Yao, Peng Ding, Yongbo Su, Xiaoxi Ning, Zhi Jin, Xinyu Liu. A full W-band low noise amplifier module for millimeter-wave applications. J. Semicond., 2015, 36(9): 095001. doi: 10.1088/1674-4926/36/9/095001

[5]

Qin Ge, Wei Liu, Bo Xu, Feng Qian, Changfei Yao. A 77-100 GHz power amplifier using 0.1-μm GaAs PHEMT technology. J. Semicond., 2017, 38(3): 035001. doi: 10.1088/1674-4926/38/3/035001

[6]

Wei Cheng, Yuan Wang, Yan Zhao, Haiyan Lu, Hanchao Gao, Naibin Yang. A THz InGaAs/InP double heterojunction bipolar transistor with fmax=325 GHz and BVCBO=10.6 V. J. Semicond., 2013, 34(5): 054006. doi: 10.1088/1674-4926/34/5/054006

[7]

Su Yongbo, Jin Zhi, Cheng Wei, Ge Ji, Wang Xiantai, Chen Gaopeng, Liu Xinyu, Xu Anhuai, Qi Ming. An InGaAs/InP 40 GHz CML static frequency divider. J. Semicond., 2011, 32(3): 035008. doi: 10.1088/1674-4926/32/3/035008

[8]

Z. Hamaizia, N. Sengouga, M. C. E. Yagoub, M. Missous. S-band low noise amplifier using 1 μm InGaAs/InAlAs/InP pHEMT. J. Semicond., 2012, 33(2): 025001. doi: 10.1088/1674-4926/33/2/025001

[9]

Su Shubing, Liu Xinyu, Xu Anhuai, Yu Jinyong, Qi Ming, Liu Xunchun, Wang Runmei. Performance of an InP DHBT Grown by MBE. J. Semicond., 2006, 27(5): 792.

[10]

Yu Mengxia, Li Aibin, Xu Jun. A Ka-Band PHEMT MMIC 1W Power Amplifier. J. Semicond., 2007, 28(10): 1513.

[11]

Zhang Shujing, Yang Ruixia, Wu Jibin, Yang Kewu. An X-Band PHEMT MMIC Power Amplifier. J. Semicond., 2006, 27(10): 1800.

[12]

Huang Qinghua, Hao Mingli, Wang Yuchen, Zhang Zongnan, Liu Xunchun. A UHF Balanced Broadband 20W Power Amplifier. J. Semicond., 2008, 29(2): 361.

[13]

Qin Ge, Xinyu Liu, Yingkui Zheng, Chuan Ye. A flat gain GaN MMIC power amplifier for X band application. J. Semicond., 2014, 35(12): 125004. doi: 10.1088/1674-4926/35/12/125004

[14]

Zhang Shujing, Yang Ruixia, Zhang Yuqing, Gao Xuebang, Yang Kewu. Broadband MMIC Power Amplifier for C-X-Ku-Band Applications. J. Semicond., 2007, 28(6): 829.

[15]

Ge Qin, Chen Xiaojuan, Luo Weijun, Yuan Tingting, Pang Lei, Liu Xinyu. A Ku-band high power density AlGaN/GaN HEMT monolithic power amplifier. J. Semicond., 2011, 32(8): 085001. doi: 10.1088/1674-4926/32/8/085001

[16]

Huang Zhenxing, Zhou Lei, Su Yongbo, Jin Zhi. A 20-GHz ultra-high-speed InP DHBT comparator. J. Semicond., 2012, 33(7): 075003. doi: 10.1088/1674-4926/33/7/075003

[17]

Su Yongbo, Jin Zhi, Cheng Wei, Liu Xinyu, Xu Anhuai, Qi Ming. Ultra high-speed InP/InGaAs DHBTs with ft of 203 GHz. J. Semicond., 2009, 30(1): 014002. doi: 10.1088/1674-4926/30/1/014002

[18]

Junming Lin, Guohao Zhang, Yaohua Zheng, Sizhen Li, Zhihao Zhang, Sidi Chen. Design of broadband class-F power amplifier with high-order harmonic suppression for S-band application. J. Semicond., 2015, 36(12): 125002. doi: 10.1088/1674-4926/36/12/125002

[19]

Jin Boshi, Wu Qun, Yang Guohui, Meng Fanyi, Fu Jiahui. A Fully-Integrated Dual Band CMOS Power Amplifier Based on an Active Matching Transformer. J. Semicond., 2008, 29(11): 2204.

[20]

Wei Cheng, Youtao Zhang, Yuan Wang, Bin Niu, Haiyan Lu, Long Chang, Junling Xie. A 220 GHz dynamic frequency divider in 0.5 μm InP DHBT technology. J. Semicond., 2017, 38(5): 054008. doi: 10.1088/1674-4926/38/5/054008

Search

Advanced Search >>

GET CITATION

H F Yao, Y X Cao, D Y Wu, X X Ning, Y B Su, Z Jin. A 16.9 dBm InP DHBT W-band power amplifier with more than 20 dB gain[J]. J. Semicond., 2013, 34(7): 075005. doi: 10.1088/1674-4926/34/7/075005.

Export: BibTex EndNote

Article Metrics

Article views: 1193 Times PDF downloads: 9 Times Cited by: 0 Times

History

Manuscript received: 16 November 2012 Manuscript revised: 18 January 2013 Online: Published: 01 July 2013

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误