J. Semicond. > Volume 34 > Issue 8 > Article Number: 083004

Electronic structure and optical properties of a new type of semiconductor material:graphene monoxide

Gui Yang 1, 2, , , Yufeng Zhang 1, and Xunwang Yan 1,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: The electronic and optical properties of graphene monoxide, a new type of semiconductor material, are theoretically studied by first-principles density functional theory. The calculated band structure shows that graphene monoxide is a semiconductor with a direct band gap of 0.95 eV. The density of states of graphene monoxide and the partial density of states for C and O are given to understand the electronic structure. In addition, we calculate the optical properties of graphene monoxide, including the complex dielectric function, absorption coefficient, complex refractive index, loss-function, reflectivity and conductivity. These results provide a physical basis for potential application in optoelectronic devices.

Key words: graphene monoxideelectronic band structureoptical property

Abstract: The electronic and optical properties of graphene monoxide, a new type of semiconductor material, are theoretically studied by first-principles density functional theory. The calculated band structure shows that graphene monoxide is a semiconductor with a direct band gap of 0.95 eV. The density of states of graphene monoxide and the partial density of states for C and O are given to understand the electronic structure. In addition, we calculate the optical properties of graphene monoxide, including the complex dielectric function, absorption coefficient, complex refractive index, loss-function, reflectivity and conductivity. These results provide a physical basis for potential application in optoelectronic devices.

Key words: graphene monoxideelectronic band structureoptical property



References:

[1]

Novoselov K S, Geim A K, Morozov S V. Two-dimensional gas of massless Dirac fermions in grapheme[J]. Nature (London), 2005, 438: 197. doi: 10.1038/nature04233

[2]

Novoselov K S, Geim A K, Morozov S V. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306: 666. doi: 10.1126/science.1102896

[3]

Zhang Y B, Tan Y W, Stormer H L. Hall effect and Berry's phase in grapheme[J]. Nature, 2005, 438: 201. doi: 10.1038/nature04235

[4]

Meyer J C, Geim A K, Katsnelson M I. The structure of suspended graphene sheets[J]. Nature, 2007, 446: 60. doi: 10.1038/nature05545

[5]

Oostinga J B, Heersche H B, Liu X L. Gate-induced insulating state in bilayer graphene devices[J]. Nature Mater, 2007, 7: 151.

[6]

Rycerz A. Random matrices and quantum chaos in weakly disordered graphene nanoflakes[J]. Phys Rev B, 2012, 85: 245424. doi: 10.1103/PhysRevB.85.245424

[7]

Rasanen E, Rozzi C A, Pittalis S. Electron-electron interactions in artificial graphene[J]. Phys Rev Lett, 2012, 108: 246803. doi: 10.1103/PhysRevLett.108.246803

[8]

Huang B L, Chang M C, Mou C Y. Persistent currents in a graphene ring with armchair edges[J]. J Phys:Condens Matter, 2012, 24: 245304. doi: 10.1088/0953-8984/24/24/245304

[9]

Hung N V, Mazzamuto F, Bournel A. Resonant tunnelling diodes based on graphene/h-BN heterostructure[J]. J Phys D:Appl Phys, 2012, 45: 325104. doi: 10.1088/0022-3727/45/32/325104

[10]

Castro E V, Novoselov K S, Morozov S V. Biased bilayer graphene:semiconductor with a gap tunable by the electric field effect[J]. Phys Rev Lett, 2007, 99: 216802. doi: 10.1103/PhysRevLett.99.216802

[11]

Zhang Y, Tang T T, Girit C. Direct observation of a widely tunable bandgap in bilayer grapheme[J]. Nature (London), 2009, 459: 820. doi: 10.1038/nature08105

[12]

Yang L, Park C H, Son Y W. Quasiparticle energies and band gaps in graphene nanoribbons[J]. Phys Rev Lett, 2007, 99: 186801. doi: 10.1103/PhysRevLett.99.186801

[13]

Han M Y, Özyilmaz B, Zhang Y. Energy band-gap engineering of graphene nanoribbons[J]. Phys Rev Lett, 2007, 98: 206805. doi: 10.1103/PhysRevLett.98.206805

[14]

Li X L, Wang X R, Zhang L. Chemically derived, ultrasmooth graphene nanoribbon semiconductors[J]. Science, 2008, 319: 5867.

[15]

Wang X R, Ouyang Y J, Li X L. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors[J]. Phys Rev Lett, 2008, 100: 206803. doi: 10.1103/PhysRevLett.100.206803

[16]

Biel B, Blase X, Triozon F. Anomalous doping effects on charge transport in graphene nanoribbons[J]. Phys Rev Lett, 2009, 102: 096803. doi: 10.1103/PhysRevLett.102.096803

[17]

Yu S, Zheng W, Wang C. Nitrogen/boron doping position dependence of the electronic properties of a triangular grapheme[J]. ACS Nano, 2010, 4: 7619. doi: 10.1021/nn102369r

[18]

Li Y, Zhou Z, Shen P. Spin gapless semiconductor-metal-half-metal properties in nitrogen-doped zigzag graphene nanoribbons[J]. ACS Nano, 2009, 3: 1952. doi: 10.1021/nn9003428

[19]

Lherbier A, Blase X, Niquet Y M. Charge transport in chemically doped 2D grapheme[J]. Phys Rev Lett, 2008, 101: 036808. doi: 10.1103/PhysRevLett.101.036808

[20]

Deng D H, Pan X L, Yu L. Toward N-doped graphene via solvothermal synthesis[J]. Chem Mater, 2011, 23(5): 1188. doi: 10.1021/cm102666r

[21]

Li Y, Zhao Y, Cheng H H. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups[J]. J Am Chem Soc, 2012, 134(1): 15. doi: 10.1021/ja206030c

[22]

Joucken F, Tison Y, Lagoute J. Localized state and charge transfer in nitrogen-doped grapheme[J]. Phys Rev B, 2012, 85: 161408. doi: 10.1103/PhysRevB.85.161408

[23]

Xiang H J, Huang B, Li Z Y. Ordered semiconducting nitrogen-graphene alloys[J]. Phys Rev X, 2012, 2: 011003.

[24]

Mkhoyan K A, Contryman A W, Silcox J. Atomic and electronic structure of graphene-oxide[J]. Nano Lett, 2009, 9(3): 1058. doi: 10.1021/nl8034256

[25]

Parka S J, Sukb J W, Anb J. The effect of concentration of graphene nanoplatelets on mechanical and electrical properties of reduced graphene oxide papers[J]. Carbon, 2012, 50(12): 4573. doi: 10.1016/j.carbon.2012.05.042

[26]

Lu G H, Park S, Yu K H. Toward practical gas sensing with highly reduced graphene oxide:a new signal processing method to circumvent run-to-run and device-to-device variations[J]. ACS Nano, 2011, 5: 1154. doi: 10.1021/nn102803q

[27]

Mattson E C, Pu H H, Cui S M. Evidence of nanocrystalline semiconducting graphene monoxide during thermal reduction of graphene oxide in vacuum[J]. ACS Nano, 2011, 5(12): 9710. doi: 10.1021/nn203160n

[28]

Neto A H C, Guinea F, Peres N M R. The electronic properties of grapheme[J]. Rev Mod Phys, 2009, 81: 109. doi: 10.1103/RevModPhys.81.109

[29]

Shen X C. Semiconductor optical properties[J]. Science Press, 1992.

[1]

Novoselov K S, Geim A K, Morozov S V. Two-dimensional gas of massless Dirac fermions in grapheme[J]. Nature (London), 2005, 438: 197. doi: 10.1038/nature04233

[2]

Novoselov K S, Geim A K, Morozov S V. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306: 666. doi: 10.1126/science.1102896

[3]

Zhang Y B, Tan Y W, Stormer H L. Hall effect and Berry's phase in grapheme[J]. Nature, 2005, 438: 201. doi: 10.1038/nature04235

[4]

Meyer J C, Geim A K, Katsnelson M I. The structure of suspended graphene sheets[J]. Nature, 2007, 446: 60. doi: 10.1038/nature05545

[5]

Oostinga J B, Heersche H B, Liu X L. Gate-induced insulating state in bilayer graphene devices[J]. Nature Mater, 2007, 7: 151.

[6]

Rycerz A. Random matrices and quantum chaos in weakly disordered graphene nanoflakes[J]. Phys Rev B, 2012, 85: 245424. doi: 10.1103/PhysRevB.85.245424

[7]

Rasanen E, Rozzi C A, Pittalis S. Electron-electron interactions in artificial graphene[J]. Phys Rev Lett, 2012, 108: 246803. doi: 10.1103/PhysRevLett.108.246803

[8]

Huang B L, Chang M C, Mou C Y. Persistent currents in a graphene ring with armchair edges[J]. J Phys:Condens Matter, 2012, 24: 245304. doi: 10.1088/0953-8984/24/24/245304

[9]

Hung N V, Mazzamuto F, Bournel A. Resonant tunnelling diodes based on graphene/h-BN heterostructure[J]. J Phys D:Appl Phys, 2012, 45: 325104. doi: 10.1088/0022-3727/45/32/325104

[10]

Castro E V, Novoselov K S, Morozov S V. Biased bilayer graphene:semiconductor with a gap tunable by the electric field effect[J]. Phys Rev Lett, 2007, 99: 216802. doi: 10.1103/PhysRevLett.99.216802

[11]

Zhang Y, Tang T T, Girit C. Direct observation of a widely tunable bandgap in bilayer grapheme[J]. Nature (London), 2009, 459: 820. doi: 10.1038/nature08105

[12]

Yang L, Park C H, Son Y W. Quasiparticle energies and band gaps in graphene nanoribbons[J]. Phys Rev Lett, 2007, 99: 186801. doi: 10.1103/PhysRevLett.99.186801

[13]

Han M Y, Özyilmaz B, Zhang Y. Energy band-gap engineering of graphene nanoribbons[J]. Phys Rev Lett, 2007, 98: 206805. doi: 10.1103/PhysRevLett.98.206805

[14]

Li X L, Wang X R, Zhang L. Chemically derived, ultrasmooth graphene nanoribbon semiconductors[J]. Science, 2008, 319: 5867.

[15]

Wang X R, Ouyang Y J, Li X L. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors[J]. Phys Rev Lett, 2008, 100: 206803. doi: 10.1103/PhysRevLett.100.206803

[16]

Biel B, Blase X, Triozon F. Anomalous doping effects on charge transport in graphene nanoribbons[J]. Phys Rev Lett, 2009, 102: 096803. doi: 10.1103/PhysRevLett.102.096803

[17]

Yu S, Zheng W, Wang C. Nitrogen/boron doping position dependence of the electronic properties of a triangular grapheme[J]. ACS Nano, 2010, 4: 7619. doi: 10.1021/nn102369r

[18]

Li Y, Zhou Z, Shen P. Spin gapless semiconductor-metal-half-metal properties in nitrogen-doped zigzag graphene nanoribbons[J]. ACS Nano, 2009, 3: 1952. doi: 10.1021/nn9003428

[19]

Lherbier A, Blase X, Niquet Y M. Charge transport in chemically doped 2D grapheme[J]. Phys Rev Lett, 2008, 101: 036808. doi: 10.1103/PhysRevLett.101.036808

[20]

Deng D H, Pan X L, Yu L. Toward N-doped graphene via solvothermal synthesis[J]. Chem Mater, 2011, 23(5): 1188. doi: 10.1021/cm102666r

[21]

Li Y, Zhao Y, Cheng H H. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups[J]. J Am Chem Soc, 2012, 134(1): 15. doi: 10.1021/ja206030c

[22]

Joucken F, Tison Y, Lagoute J. Localized state and charge transfer in nitrogen-doped grapheme[J]. Phys Rev B, 2012, 85: 161408. doi: 10.1103/PhysRevB.85.161408

[23]

Xiang H J, Huang B, Li Z Y. Ordered semiconducting nitrogen-graphene alloys[J]. Phys Rev X, 2012, 2: 011003.

[24]

Mkhoyan K A, Contryman A W, Silcox J. Atomic and electronic structure of graphene-oxide[J]. Nano Lett, 2009, 9(3): 1058. doi: 10.1021/nl8034256

[25]

Parka S J, Sukb J W, Anb J. The effect of concentration of graphene nanoplatelets on mechanical and electrical properties of reduced graphene oxide papers[J]. Carbon, 2012, 50(12): 4573. doi: 10.1016/j.carbon.2012.05.042

[26]

Lu G H, Park S, Yu K H. Toward practical gas sensing with highly reduced graphene oxide:a new signal processing method to circumvent run-to-run and device-to-device variations[J]. ACS Nano, 2011, 5: 1154. doi: 10.1021/nn102803q

[27]

Mattson E C, Pu H H, Cui S M. Evidence of nanocrystalline semiconducting graphene monoxide during thermal reduction of graphene oxide in vacuum[J]. ACS Nano, 2011, 5(12): 9710. doi: 10.1021/nn203160n

[28]

Neto A H C, Guinea F, Peres N M R. The electronic properties of grapheme[J]. Rev Mod Phys, 2009, 81: 109. doi: 10.1103/RevModPhys.81.109

[29]

Shen X C. Semiconductor optical properties[J]. Science Press, 1992.

Search

Advanced Search >>

GET CITATION

G Yang, Y F Zhang, X W Yan. Electronic structure and optical properties of a new type of semiconductor material:graphene monoxide[J]. J. Semicond., 2013, 34(8): 083004. doi: 10.1088/1674-4926/34/8/083004.

Export: BibTex EndNote

Article Metrics

Article views: 1308 Times PDF downloads: 7 Times Cited by: 0 Times

History

Manuscript received: 27 January 2013 Manuscript revised: 06 March 2013 Online: Published: 01 August 2013

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误