J. Semicond. > Volume 34 > Issue 8 > Article Number: 085006

High-Q micro-ring resonators and grating couplers for silicon-on-insulator integrated photonic circuits

Xiaogang Tong , Jun Liu , and Chenyang Xue ,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: An ultra-small integrated photonic circuit has been proposed, which incorporates a high-quality-factor passive micro-ring resonator (MR) linked to a vertical grating coupler on a standard silicon-on-insulator (SOI) substrate. The experimental results demonstrate that the MR propagation loss is 0.532 dB/cm with a 10 μm radius ring resonator, the intrinsic quality factor is as high as 202.000, the waveguide grating wavelength response curve is a 1 dB bandwidth of 40 nm at 1540 nm telecommunication wavelengths, and the measured fiber-to-fiber coupling loss is 10 dB. Furthermore, the resonator wavelength temperature dependence of the 450 nm wide micro-ring resonator is 54.1 pm/℃. Such vertical grating coupler and low loss MR-integrated components greatly promote a key element in biosensors and high-speed interconnect communication applications.

Key words: high-quality-factorpassive micro-ring resonatorswaveguide grating couplersintegrated photonic circuit

Abstract: An ultra-small integrated photonic circuit has been proposed, which incorporates a high-quality-factor passive micro-ring resonator (MR) linked to a vertical grating coupler on a standard silicon-on-insulator (SOI) substrate. The experimental results demonstrate that the MR propagation loss is 0.532 dB/cm with a 10 μm radius ring resonator, the intrinsic quality factor is as high as 202.000, the waveguide grating wavelength response curve is a 1 dB bandwidth of 40 nm at 1540 nm telecommunication wavelengths, and the measured fiber-to-fiber coupling loss is 10 dB. Furthermore, the resonator wavelength temperature dependence of the 450 nm wide micro-ring resonator is 54.1 pm/℃. Such vertical grating coupler and low loss MR-integrated components greatly promote a key element in biosensors and high-speed interconnect communication applications.

Key words: high-quality-factorpassive micro-ring resonatorswaveguide grating couplersintegrated photonic circuit



References:

[1]

Zimmermann L, Tekin T, Schroeder H. How to bring nanophotonics to application-silicon photonics packaging[J]. LEOS Newsletter, 2008, 22: 4.

[2]

Xu Q, Manipatruni S, Schmidt B. 12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators[J]. Opt Express, 2007, 15: 430. doi: 10.1364/OE.15.000430

[3]

Wu Zhigang, Zhang Weigang, Wang Zhi. Fabrication and evaluation of Bragg gratings on optimally designed silicon-on-insulator rib waveguides using electron-beam lithography[J]. Chinese Journal of Semiconductors, 2006, 27(8): 1347.

[4]

Li Shuai, Wu Yuanda, Yin Xiaojie. Tunable filters based on an SOI nano-wire waveguide micro ring resonator[J]. Journal of Semiconductors, 2011, 32(8): 084007. doi: 10.1088/1674-4926/32/8/084007

[5]

Ren G H, Cheng S W, Cheng Y P. Study on inverse taper based mode transformer for low loss coupling between silicon wire waveguide and lensed fiber[J]. Opt Commun, 2011, 284: 4782. doi: 10.1016/j.optcom.2011.05.072

[6]

Manolatou C, Lipson M. All-optical silicon modulators based on carrier injection by two-photon absorption[J]. J Lightwave Technol, 2006, 24: 1433. doi: 10.1109/JLT.2005.863326

[7]

Po D, Preble S F, Lipson M. All-optical compact silicon comb switch[J]. Opt Express, 2007, 15: 9600. doi: 10.1364/OE.15.009600

[8]

Little B E, Chu S T, Haus H A. Microring resonator channel dropping filters[J]. J Lightwave Technol, 1997, 15: 998. doi: 10.1109/50.588673

[9]

Xu D X, Densmore A, Delâge A. Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding[J]. Opt Express, 2008, 16: 15137. doi: 10.1364/OE.16.015137

[10]

Xia F N, Sekaric L, Vlasov Y. Ultracompact optical buffers on a silicon chip[J]. Nat Photonics, 2007, 1: 65. doi: 10.1038/nphoton.2006.42

[11]

Xu Q F, Dong P, Lipson M. Breaking the delay-bandwidth limit in a photonic structure[J]. Nat Phys, 2007, 3: 406. doi: 10.1038/nphys600

[12]

Xiao S, Khan M H, Shen H. Modeling and measurement of losses in silicon-on-insulator resonators and bends[J]. Opt Express, 2007, 15: 10553. doi: 10.1364/OE.15.010553

[13]

Liu S W, Xiao M. Electro-optic switch in ferroelectric thin films mediated by surface plasmons[J]. Appl Phys Lett, 2006, 88: 14.

[14]

Luo L W, Wiederhecker G S, Cardenas J. High quality factor etchless silicon photonic ring resonators[J]. Opt Express, 2011, 19: 6284. doi: 10.1364/OE.19.006284

[15]

Rabiei P, Steier W H, Zhang C. Polymer micro-ring filters and modulators[J]. J Lightwave Technol, 2002, 20: 1968. doi: 10.1109/JLT.2002.803058

[16]

Kokubun Y, Yoneda S, Matsuura S. Temperature-independent optical filter at 1.55-μm wavelength using a silica-based thermal waveguide[J]. Electron Lett, 1998, 34: 367. doi: 10.1049/el:19980245

[1]

Zimmermann L, Tekin T, Schroeder H. How to bring nanophotonics to application-silicon photonics packaging[J]. LEOS Newsletter, 2008, 22: 4.

[2]

Xu Q, Manipatruni S, Schmidt B. 12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators[J]. Opt Express, 2007, 15: 430. doi: 10.1364/OE.15.000430

[3]

Wu Zhigang, Zhang Weigang, Wang Zhi. Fabrication and evaluation of Bragg gratings on optimally designed silicon-on-insulator rib waveguides using electron-beam lithography[J]. Chinese Journal of Semiconductors, 2006, 27(8): 1347.

[4]

Li Shuai, Wu Yuanda, Yin Xiaojie. Tunable filters based on an SOI nano-wire waveguide micro ring resonator[J]. Journal of Semiconductors, 2011, 32(8): 084007. doi: 10.1088/1674-4926/32/8/084007

[5]

Ren G H, Cheng S W, Cheng Y P. Study on inverse taper based mode transformer for low loss coupling between silicon wire waveguide and lensed fiber[J]. Opt Commun, 2011, 284: 4782. doi: 10.1016/j.optcom.2011.05.072

[6]

Manolatou C, Lipson M. All-optical silicon modulators based on carrier injection by two-photon absorption[J]. J Lightwave Technol, 2006, 24: 1433. doi: 10.1109/JLT.2005.863326

[7]

Po D, Preble S F, Lipson M. All-optical compact silicon comb switch[J]. Opt Express, 2007, 15: 9600. doi: 10.1364/OE.15.009600

[8]

Little B E, Chu S T, Haus H A. Microring resonator channel dropping filters[J]. J Lightwave Technol, 1997, 15: 998. doi: 10.1109/50.588673

[9]

Xu D X, Densmore A, Delâge A. Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding[J]. Opt Express, 2008, 16: 15137. doi: 10.1364/OE.16.015137

[10]

Xia F N, Sekaric L, Vlasov Y. Ultracompact optical buffers on a silicon chip[J]. Nat Photonics, 2007, 1: 65. doi: 10.1038/nphoton.2006.42

[11]

Xu Q F, Dong P, Lipson M. Breaking the delay-bandwidth limit in a photonic structure[J]. Nat Phys, 2007, 3: 406. doi: 10.1038/nphys600

[12]

Xiao S, Khan M H, Shen H. Modeling and measurement of losses in silicon-on-insulator resonators and bends[J]. Opt Express, 2007, 15: 10553. doi: 10.1364/OE.15.010553

[13]

Liu S W, Xiao M. Electro-optic switch in ferroelectric thin films mediated by surface plasmons[J]. Appl Phys Lett, 2006, 88: 14.

[14]

Luo L W, Wiederhecker G S, Cardenas J. High quality factor etchless silicon photonic ring resonators[J]. Opt Express, 2011, 19: 6284. doi: 10.1364/OE.19.006284

[15]

Rabiei P, Steier W H, Zhang C. Polymer micro-ring filters and modulators[J]. J Lightwave Technol, 2002, 20: 1968. doi: 10.1109/JLT.2002.803058

[16]

Kokubun Y, Yoneda S, Matsuura S. Temperature-independent optical filter at 1.55-μm wavelength using a silica-based thermal waveguide[J]. Electron Lett, 1998, 34: 367. doi: 10.1049/el:19980245

[1]

Rongrui Liu, Yubing Wang, Dongdong Yin, Han Ye, Xiaohong Yang, Qin Han. A high-efficiency grating coupler between single-mode fiber and silicon-on-insulator waveguide. J. Semicond., 2017, 38(5): 054007. doi: 10.1088/1674-4926/38/5/054007

[2]

Lian Ning, Lijun Guo, Mei Kong, Tuoyuan Chen. Waveguide-type optical passive ring resonator gyro using frequency modulation spectroscopy technique. J. Semicond., 2014, 35(12): 124008. doi: 10.1088/1674-4926/35/12/124008

[3]

Gao Yong, Zhang Xin, Liu Mengxin, An Tao, Liu Shanxi, Ma Liguo. SOICMOS Integrated Circuit of Laser Range Finding Working at High Temperatures. J. Semicond., 2007, 28(2): 159.

[4]

Li Shuai, Wu Yuanda, Yin Xiaojie, An Junming, Li Jianguang, Wang Hongjie, Hu Xiongwei. Tunable filters based on an SOI nano-wire waveguide micro ring resonator. J. Semicond., 2011, 32(8): 084007. doi: 10.1088/1674-4926/32/8/084007

[5]

Lang Tingting, He Jianjun, He Sailing. A Novel Triplexer Design Based on Arrayed Waveguide Grating. J. Semicond., 2006, 27(2): 368.

[6]

Du Wei, Xu Xingsheng, Han Weihua, Wang Chunxia, Zhang Yang, Yang Fuhua, Chen Hongda. Fabrication of a High Quality Etching Mask for Two-Dimensional Photonic Crystal Structures. J. Semicond., 2006, 27(9): 1640.

[7]

Shoucheng Li, Xin'an Wang, Ke Lin, Jingpeng Shen, Jinhai Zhang. Design and implementation of a high sensitivity fully integrated passive UHF RFID tag. J. Semicond., 2014, 35(10): 105010. doi: 10.1088/1674-4926/35/10/105010

[8]

Dongdong Yin, Tingting He, Qin Han, Qianqian Lü, Yejin Zhang, Xiaohong Yang. High-responsivity 40 Gbit/s InGaAs/InP PIN photodetectors integrated on siliconon-insulator waveguide circuitss. J. Semicond., 2016, 37(11): 114006. doi: 10.1088/1674-4926/37/11/114006

[9]

Hu Hao, Chen Xingbi. A novel high voltage start up circuit for an integrated switched mode power supply. J. Semicond., 2010, 31(9): 094012. doi: 10.1088/1674-4926/31/9/094012

[10]

Xiangfei Chen. Precision photonic integration for future large-scale photonic integrated circuits. J. Semicond., 2019, 40(5): 050301. doi: 10.1088/1674-4926/40/5/050301

[11]

Qin Zhengkun, Ma Chunsheng, Li Delu, Zhang Haiming, Zhang Daming, Liu Shiyong. Effect of Manufacturing Tolerances on Characteristics ofArrayed Waveguide Grating Multiplexers. J. Semicond., 2006, 27(5): 926.

[12]

Zhou Tianhong, Ma Weidong. A novel fabrication approach for an athermal arrayed-waveguide grating. J. Semicond., 2010, 31(1): 014005. doi: 10.1088/1674-4926/31/1/014005

[13]

An Junming, Xia Junzhi, Li Jian, Gao Dingshan, Li Jianguang, Wang Hongjie, Hu Xiongwei. Numerical Analysis for Phase Error of Silica-Based Arrayed Waveguide Grating. J. Semicond., 2005, 26(S1): 220.

[14]

Pan Pan, An Junming, Wang Liangliang, Wu Yuanda, Wang Yue, Hu Xiongwei. Design and fabrication of an InP arrayed waveguide grating for monolithic PICs. J. Semicond., 2012, 33(7): 074010. doi: 10.1088/1674-4926/33/7/074010

[15]

Qin Zhengkun, Ma Chunsheng. Polymer Arrayed Waveguide Grating with Box-Like Spectral Response. J. Semicond., 2008, 29(12): 2307.

[16]

Feifan Xu, Xu Cen, Bin Liu, Danbei Wang, Tao Tao, Ting Zhi, Qi Wang, Zili Xie, Yugang Zhou, Youdou Zheng, Rong Zhang. High performance GaN-based hybrid white micro-LEDs integrated with quantum-dots. J. Semicond., 2020, 41(3): 032301. doi: 10.1088/1674-4926/41/3/032301

[17]

, , , , , , . Design,Fabrication,and Testing of SingleSide Alignment of 16×0.8nm Arrayed Waveguide Grating. J. Semicond., 2005, 26(2): 254.

[18]

Zhao Lei, An Junming, Zhang Jiashun, Song Shijiao, Wu Yuanda, Hu Xiongwei. 16 channel 200 GHz arrayed waveguide grating based on Si nanowire waveguides. J. Semicond., 2011, 32(2): 024010. doi: 10.1088/1674-4926/32/2/024010

[19]

Qin Zhengkun, He Fei, Liu Chunling, Wang Lizhong, Ma Chunsheng. Fabrication of 17 × 17 polymer/Si arrayed waveguide grating with flat spectral response using steam-redissolution technique. J. Semicond., 2010, 31(7): 074004. doi: 10.1088/1674-4926/31/7/074004

[20]

Zhengkun Qin, Yue Yu, Jia Song, Huiping Zhang, Guofeng Wang, Yongxin Sun, Yuhai Wang. Analysis of fabrication results for 17×17 polymer arrayed waveguide grating multiplexers with flat spectral responses. J. Semicond., 2013, 34(9): 094011. doi: 10.1088/1674-4926/34/9/094011

Search

Advanced Search >>

GET CITATION

X G Tong, J Liu, C Y Xue. High-Q micro-ring resonators and grating couplers for silicon-on-insulator integrated photonic circuits[J]. J. Semicond., 2013, 34(8): 085006. doi: 10.1088/1674-4926/34/8/085006.

Export: BibTex EndNote

Article Metrics

Article views: 1215 Times PDF downloads: 6 Times Cited by: 0 Times

History

Manuscript received: 29 September 2012 Manuscript revised: 05 March 2013 Online: Published: 01 August 2013

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误