J. Semicond. > Volume 35 > Issue 10 > Article Number: 104001

Model development for analyzing 2DEG sheet charge density and threshold voltage considering interface DOS for AlInN/GaN MOSHEMT

Devashish Pandey and T.R. Lenka ,

+ Author Affilications + Find other works by these authors

PDF

Abstract: A model predicting the behavior of various parameters, such as 2DEG sheet charge density and threshold voltage, with the variation of barrier thickness and oxide thickness considering interface density of states is presented. The mathematical dependence of these parameters is derived in conjunction with the interface density of states. The dependence of sheet charge density with the barrier thickness and with the oxide thickness is plotted and an insight into the barrier scaling properties of AlInN based MOSHEMTs is presented. The threshold voltage is also plotted with respect to barrier thickness and oxide thickness, which reveals the possibility of the enhancement mode operation of the device at low values of the interface DOS. The results are in good agreement with the fabricated device available in the literature.

Key words: DOSAlInNMOSHEMT2DEGbarrier scaling

Abstract: A model predicting the behavior of various parameters, such as 2DEG sheet charge density and threshold voltage, with the variation of barrier thickness and oxide thickness considering interface density of states is presented. The mathematical dependence of these parameters is derived in conjunction with the interface density of states. The dependence of sheet charge density with the barrier thickness and with the oxide thickness is plotted and an insight into the barrier scaling properties of AlInN based MOSHEMTs is presented. The threshold voltage is also plotted with respect to barrier thickness and oxide thickness, which reveals the possibility of the enhancement mode operation of the device at low values of the interface DOS. The results are in good agreement with the fabricated device available in the literature.

Key words: DOSAlInNMOSHEMT2DEGbarrier scaling



References:

[1]

Maier D, Alomari M, Grandjean N. InAlN/GaN HEMTs for operation in the 1000℃ regime:a first experiment[J]. IEEE Electron Device Lett, 2012, 33(7): 985. doi: 10.1109/LED.2012.2196972

[2]

Medjdoub F, Carlin J F, Gonschorek M. Can InAlN/GaN be an alternative high power/high temperature AlGaN/GaN devices[J]. Proc IEDM Tech Dig, 2006: 1.

[3]

Maier D, Alomari M, Grandjean N. Testing the temperature limits of GaN-based devices[J]. IEEE Trans Device Mater Rel, 2010, 10(4): 427. doi: 10.1109/TDMR.2010.2072507

[4]

Chung J W, Saadat O I, Tirado J M. Gate-recessed InAlN/GaN HEMTs on SiC substrate with Al2O3 passivation[J]. IEEE Electron Device Lett, 2009, 30(9): 904. doi: 10.1109/LED.2009.2026718

[5]

Vetury R, Zhang N Q, Keller S. The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs[J]. IEEE Trans Electron Devices, 2001, 48(3): 560. doi: 10.1109/16.906451

[6]

Bykhovski A D, Gelmont B L, Shur M S. Elastic strain relaxation and piezoeffect in GaN-AlN, GaN-AlGaN and GaN-InGaN superlattices[J]. J Appl Phys, 1997, 81: 6322. doi: 10.1063/1.364366

[7]

Kola S, Golio J M, Maracas G N. An analytical expression for Fermi level versus sheet carrier concentration for HEMT modeling[J]. IEEE Electron Device Lett, 1988, 9(3): 136. doi: 10.1109/55.2067

[8]

Li M, Wang Y. 2-D analytical model for current-voltage characteristics and transconductance of AlGaN/GaN MODFETs[J]. IEEE Trans Electron Devices, 2008, 55(1): 261. doi: 10.1109/TED.2007.911076

[9]

Cheng X W, Li M, Wang Y. Physics-based compact model for AlGaN/GaN MODFETs with close-formed I-V and C-V characteristics[J]. IEEE Trans Electron Devices, 2009, 56(12): 2881. doi: 10.1109/TED.2009.2030722

[10]

Medjdoub F, Alomari M, Carlin J F. Barrier-layer scaling of InAlN/GaN HEMTs[J]. IEEE Electron Device Lett, 2008, 29(5): 422. doi: 10.1109/LED.2008.919377

[11]

Bhattacharjee A, Lenka T R. Performance analysis of 20 nm gate length In0.2Al0.8N/GaN HEMT with Cu-gate having a remarkable high ION/IOFF ratio[J]. Journal of Semiconductors, 2014, 35(6): 064002. doi: 10.1088/1674-4926/35/6/064002

[1]

Maier D, Alomari M, Grandjean N. InAlN/GaN HEMTs for operation in the 1000℃ regime:a first experiment[J]. IEEE Electron Device Lett, 2012, 33(7): 985. doi: 10.1109/LED.2012.2196972

[2]

Medjdoub F, Carlin J F, Gonschorek M. Can InAlN/GaN be an alternative high power/high temperature AlGaN/GaN devices[J]. Proc IEDM Tech Dig, 2006: 1.

[3]

Maier D, Alomari M, Grandjean N. Testing the temperature limits of GaN-based devices[J]. IEEE Trans Device Mater Rel, 2010, 10(4): 427. doi: 10.1109/TDMR.2010.2072507

[4]

Chung J W, Saadat O I, Tirado J M. Gate-recessed InAlN/GaN HEMTs on SiC substrate with Al2O3 passivation[J]. IEEE Electron Device Lett, 2009, 30(9): 904. doi: 10.1109/LED.2009.2026718

[5]

Vetury R, Zhang N Q, Keller S. The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs[J]. IEEE Trans Electron Devices, 2001, 48(3): 560. doi: 10.1109/16.906451

[6]

Bykhovski A D, Gelmont B L, Shur M S. Elastic strain relaxation and piezoeffect in GaN-AlN, GaN-AlGaN and GaN-InGaN superlattices[J]. J Appl Phys, 1997, 81: 6322. doi: 10.1063/1.364366

[7]

Kola S, Golio J M, Maracas G N. An analytical expression for Fermi level versus sheet carrier concentration for HEMT modeling[J]. IEEE Electron Device Lett, 1988, 9(3): 136. doi: 10.1109/55.2067

[8]

Li M, Wang Y. 2-D analytical model for current-voltage characteristics and transconductance of AlGaN/GaN MODFETs[J]. IEEE Trans Electron Devices, 2008, 55(1): 261. doi: 10.1109/TED.2007.911076

[9]

Cheng X W, Li M, Wang Y. Physics-based compact model for AlGaN/GaN MODFETs with close-formed I-V and C-V characteristics[J]. IEEE Trans Electron Devices, 2009, 56(12): 2881. doi: 10.1109/TED.2009.2030722

[10]

Medjdoub F, Alomari M, Carlin J F. Barrier-layer scaling of InAlN/GaN HEMTs[J]. IEEE Electron Device Lett, 2008, 29(5): 422. doi: 10.1109/LED.2008.919377

[11]

Bhattacharjee A, Lenka T R. Performance analysis of 20 nm gate length In0.2Al0.8N/GaN HEMT with Cu-gate having a remarkable high ION/IOFF ratio[J]. Journal of Semiconductors, 2014, 35(6): 064002. doi: 10.1088/1674-4926/35/6/064002

[1]

J. Panda, K. Jena, R. Swain, T. R. Lenka. Modeling on oxide dependent 2DEG sheet charge density and threshold voltage in AlGaN/GaN MOSHEMT. J. Semicond., 2016, 37(4): 044003. doi: 10.1088/1674-4926/37/4/044003

[2]

Kanjalochan Jena, Raghunandan Swain, T. R. Lenka. Impact of barrier thickness on gate capacitance——modeling and comparative analysis of GaN based MOSHEMTs. J. Semicond., 2015, 36(3): 034003. doi: 10.1088/1674-4926/36/3/034003

[3]

Dandeswar Deka, A. Rahman, R. K. Thap. Calculations of DOS and electronic structure in Bi2S3 and Bi2Se3 by using FP-LAPW method. J. Semicond., 2015, 36(2): 022002. doi: 10.1088/1674-4926/36/2/022002

[4]

D. P. Rai, R. K. Thapa. Prediction of semiconducting behavior in minority spin of Co2CrZ (Z = Ga, Ge, As): LSDA. J. Semicond., 2012, 33(12): 123001. doi: 10.1088/1674-4926/33/12/123001

[5]

Godwin Raj, Hemant Pardeshi, Sudhansu Kumar Pati, N Mohankumar, Chandan Kumar Sarkar. A 2DEG charge density based drain current model for various Al and In molefraction mobility dependent nano-scale AlInGaN/AlN/GaN HEMT devices. J. Semicond., 2013, 34(4): 044002. doi: 10.1088/1674-4926/34/4/044002

[6]

Lu Shenghui, Du Jiangfeng, Luo Qian, Yu Qi, Zhou Wei, Xia Jianxin, Yang Mohua. Analytical charge control model for AlGaN/GaN MIS-HFETs includingan undepleted barrier layer. J. Semicond., 2010, 31(9): 094004. doi: 10.1088/1674-4926/31/9/094004

[7]

A Shankar, D P Rai, Sandeep, R K Thapa. Structural, electronic, magnetic and optical properties of neodymium chalcogenides using LSDA+U method. J. Semicond., 2012, 33(8): 082001. doi: 10.1088/1674-4926/33/8/082001

[8]

Zhao Jianzhi, Lin Zhaojun, Corrigan T D, Zhang Yu, Li Huijun, Wang Zhanguo. Influence of annealed ohmic contact metals on electron mobility of strained AlGaN/GaN heterostructures. J. Semicond., 2009, 30(10): 102003. doi: 10.1088/1674-4926/30/10/102003

[9]

Tao Chunmin, Tao Yaqi, Chen Cheng, Kong Yuechan, Chen Dunjun, Shen Bo, , Jiao Gang, Chen Tangsheng, Zhang Rong. High-Temperature Transport Properties of 2DEG in AlGaN/GaN Heterostructures. J. Semicond., 2006, 27(7): 1251.

[10]

T. R. Lenka, G. N. Dash, A. K. Panda. RF and microwave characteristics of a 10 nm thick InGaN-channel gate recessed HEMT. J. Semicond., 2013, 34(11): 114003. doi: 10.1088/1674-4926/34/11/114003

[11]

Jie Wang, Lingling Sun, Jun Liu, Mingzhu Zhou. A surface-potential-based model for AlGaN/AlN/GaN HEMT. J. Semicond., 2013, 34(9): 094002. doi: 10.1088/1674-4926/34/9/094002

[12]

Bi Yang, Wang Xiaoliang, Xiao Hongling, Wang Cuimei, Yang Cuibai, Peng Enchao, Lin Defeng, Feng Chun, Jiang Lijuan. Simulation of electrical properties of InxAl1-xN/AlN/GaN high electron mobility transistor structure. J. Semicond., 2011, 32(8): 083003. doi: 10.1088/1674-4926/32/8/083003

[13]

Ziliang Cai, Ming Li, Libo Fan. Sheet carrier density dependent Rashba spin splitting in the Al0.5Ga0.5N/GaN/Al0.5Ga0.5N quantum well. J. Semicond., 2014, 35(9): 092002. doi: 10.1088/1674-4926/35/9/092002

[14]

Wang Chong, Zhang Jinfeng, , Yang Yan, Hao Yue, Feng Qian. Temperature Characteristics of AlGaN/GaN HEMTs Using C-Vand TLM for Evaluating Temperatures. J. Semicond., 2006, 27(5): 864.

[15]

, , , , , , , , , . . J. Semicond., 2005, 26(6): 1116.

[16]

Hemant Pardeshi, Sudhansu Kumar Pati, Godwin Raj, N Mohankumar, Chandan Kumar Sarkar. Effect of underlap and gate length on device performance of an AlInN/GaN underlap MOSFET. J. Semicond., 2012, 33(12): 124001. doi: 10.1088/1674-4926/33/12/124001

[17]

Kenyu Osada, Hiroyasu Katsuno, Toshiharu Irisawa, Yukio Saito. Scaling relation of domain competition on (2+1)-dimensional ballistic deposition model with surface diffusion. J. Semicond., 2016, 37(9): 092001. doi: 10.1088/1674-4926/37/9/092001

[18]

Abdulkerim Karabulut, Hasan Efeoglu, Abdulmecit Turut. Influence of Al2O3 barrier on the interfacial electronic structure of Au/Ti/n-GaAs structures. J. Semicond., 2017, 38(5): 054003. doi: 10.1088/1674-4926/38/5/054003

[19]

Jitendra Kanungo, S. Dasgupta. Scaling trends in energy recovery logic:an analytical approach. J. Semicond., 2013, 34(8): 085001. doi: 10.1088/1674-4926/34/8/085001

[20]

Hu Aibin, Wang Wenwu, Xu Qiuxia. (NH4)2S treatment of the Si (100) surface and its effects on Al/Si Schottky barrier heights. J. Semicond., 2009, 30(8): 084001. doi: 10.1088/1674-4926/30/8/084001

Search

Advanced Search >>

GET CITATION

D. Pandey, T.R. Lenka. Model development for analyzing 2DEG sheet charge density and threshold voltage considering interface DOS for AlInN/GaN MOSHEMT[J]. J. Semicond., 2014, 35(10): 104001. doi: 10.1088/1674-4926/35/10/104001.

Export: BibTex EndNote

Article Metrics

Article views: 702 Times PDF downloads: 6 Times Cited by: 0 Times

History

Manuscript received: 16 February 2014 Manuscript revised: Online: Published: 01 October 2014

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误