J. Semicond. > Volume 35 > Issue 10 > Article Number: 104004

ADO-phosphonic acid self-assembled monolayer modified dielectrics for organic thin film transistors

Zhefeng Li , and Xianye Luo

+ Author Affilications + Find other works by these authors

PDF

Abstract: This study explores a strategy of using the phosphonic acid derivative (11-((12-(anthracen-2-yl)dodecyl)oxy)-11-oxoundecyl) phosphonic acid (ADO-phosphonic acid) as self-assembled monolayers (SAMs) on a Si/SiO2 surface to induce the crystallization of rubrene in vacuum deposited thin film transistors, which showed a field-effect mobility as high as 0.18 cm2/(V·s). It is found that ADO-phosphonic acid SAMs play a unique role in modulating the morphology of rubrene to form a crystalline film in the thin-film transistors.

Key words: thin film transistorsself-assembled monolayerphosphonic acid derivative

Abstract: This study explores a strategy of using the phosphonic acid derivative (11-((12-(anthracen-2-yl)dodecyl)oxy)-11-oxoundecyl) phosphonic acid (ADO-phosphonic acid) as self-assembled monolayers (SAMs) on a Si/SiO2 surface to induce the crystallization of rubrene in vacuum deposited thin film transistors, which showed a field-effect mobility as high as 0.18 cm2/(V·s). It is found that ADO-phosphonic acid SAMs play a unique role in modulating the morphology of rubrene to form a crystalline film in the thin-film transistors.

Key words: thin film transistorsself-assembled monolayerphosphonic acid derivative



References:

[1]

Tang M L, Reichardt A D, Wei P. Correlating carrier type with frontier molecular orbital energy levels in organic thin film transistors of functionalized acene derivatives[J]. J Am Chem Soc, 2009, 131: 5264. doi: 10.1021/ja809659b

[2]

Dodabalapur A. Semiconductor technology-negatively successful[J]. Nature, 2005, 434: 151.

[3]

Sirringhaus H. Device physics of Solution-processed organic field-effect transistors[J]. Adv Mater, 2005, 17: 2411. doi: 10.1002/(ISSN)1521-4095

[4]

Roberts M E, LeMieux M C, Bao Z N. Sorted and aligned single-walled carbon nanotube networks for transistor-based aqueous chemical sensors[J]. ACS Nano, 2009, 10: 3287.

[5]

Li Z F, Du J, Tang Q. Induced crystallization of rubrene in thin-film transistors[J]. Adv Mater, 2010, 22: 3242. doi: 10.1002/adma.201000786

[6]

Hwang S K, Bae I, Cho S M. High performance multi-level non-volatile polymer memory with solution-blended ferroelectric polymer/high-k insulators for low voltage operation[J]. Adv Funct Mater, 2013, 23: 5484. doi: 10.1002/adfm.v23.44

[7]

Tsai T D, Chang J W, Wen T C. Manipulating the hysteresis in poly(vinyl alcohol)-dielectric organic field-effect transistors toward memory elements[J]. Adv Funct Mater, 2013, 23: 4206. doi: 10.1002/adfm.v23.34

[8]

Majewski L A, Schroeder R, Grell M. One volt organic transistor[J]. Adv Mater, 2005, 17: 192. doi: 10.1002/(ISSN)1521-4095

[9]

Zirkl M, Haase A, Fian A. Low-voltage organic thin-film transistors with high-k nanocomposite gate dielectrics for flexible electronics and optothermal sensors[J]. Adv Mater, 2007, 19: 2241. doi: 10.1002/(ISSN)1521-4095

[10]

Lee B H, Ryu M K, Choi S Y. Rapid vapor-phase fabrication of organic-inorganic hybrid superlattices with monolayer precision[J]. J Am Chem Soc, 2007, 129: 16034. doi: 10.1021/ja075664o

[11]

Park B, Cho S E, Kim Y. Simultaneous study of exciton diffusion/dissociation and charge transport in a donor-acceptor bilayer:pentacene on a C60-terminated self-assembled monolayer[J]. Adv Mater, 2013, 25: 6453. doi: 10.1002/adma.v25.44

[12]

Ulman A. Formation and structure of self-assembled monolayers[J]. Chem Rev, 1996, 96: 1533. doi: 10.1021/cr9502357

[13]

Onclin S, Ravoo B J, Reinhoudt D N. Engineering silicon oxide surfaces using self-assembled monolayers using self-assembled monolayers[J]. Angew Chem Int. Ed, 2005, 44: 6282. doi: 10.1002/(ISSN)1521-3773

[14]

Walter S R, Youn J, Emery J D. In-situ probe of gate dielectric-semiconductor interfacial order in organic transistors:origin and control of large performance sensitivities[J]. J Am Chem Soc, 2012, 134(28): 11726. doi: 10.1021/ja3036493

[15]

Halik M, Hirsch A. The potential of molecular self-assembled monolayers in organic electronic devices[J]. Adv Mater, 2011, 23: 2689. doi: 10.1002/adma.v23.22/23

[16]

Silverman B M, Wieghaus K A, Schwartz J. Comparative properties of siloxane vs phosphonate monolayers on a key titanium alloy[J]. Langmuir, 2005, 21: 225. doi: 10.1021/la048227l

[17]

Liakos I L, McAlpine E, Chen X Y. Assembly of octadecyl phosphonic acid on the α-Al2O3 (0001) surface of air annealed alumina:evidence for termination dependent adsorption[J]. Appl Surf Sci, 2008, 255(5): 3276. doi: 10.1016/j.apsusc.2008.09.037

[18]

Hanson E L, Schwartz J, Nickel B. Bonding self-assembled, compact organophosphonate monolayers to the native oxide surface of silicon[J]. J Am Chem Soc, 2003, 125(51): 16074. doi: 10.1021/ja035956z

[19]

Guo X, Qin C J, Cheng Y X. White electroluminescence from a phosphonate-functionalized single-polymer system with electron-trapping effect[J]. Adv Mater, 2009, 21: 3682. doi: 10.1002/adma.v21:36

[20]

Kang M S, Ma H, Yip H L. Direct surface functionalization of indium tin oxide via electrochemically induced assembly[J]. J Mater Chem, 2007, 17: 3489. doi: 10.1039/b705559e

[21]

Klauk H, Zschieschang U, Pflaum J. Ultralow-power organic complementary circuits[J]. Nature, 2007, 445: 745. doi: 10.1038/nature05533

[22]

Jurchescu O D, Meetsma A, Palstra T T M. Low-temperature structure of rubrene single crystals grown by vapor transport[J]. Acta Crystallographica Section B:Structural Science, 2006, 62: 330. doi: 10.1107/S0108768106003053

[23]

Yang S Y, Shin K, Park C E. The effect of gate-dielectric surface energy on pentacene morphology and organic field-effect transistor characteristics[J]. Adv Funct Mater, 2005, 15: 1806. doi: 10.1002/(ISSN)1616-3028

[1]

Tang M L, Reichardt A D, Wei P. Correlating carrier type with frontier molecular orbital energy levels in organic thin film transistors of functionalized acene derivatives[J]. J Am Chem Soc, 2009, 131: 5264. doi: 10.1021/ja809659b

[2]

Dodabalapur A. Semiconductor technology-negatively successful[J]. Nature, 2005, 434: 151.

[3]

Sirringhaus H. Device physics of Solution-processed organic field-effect transistors[J]. Adv Mater, 2005, 17: 2411. doi: 10.1002/(ISSN)1521-4095

[4]

Roberts M E, LeMieux M C, Bao Z N. Sorted and aligned single-walled carbon nanotube networks for transistor-based aqueous chemical sensors[J]. ACS Nano, 2009, 10: 3287.

[5]

Li Z F, Du J, Tang Q. Induced crystallization of rubrene in thin-film transistors[J]. Adv Mater, 2010, 22: 3242. doi: 10.1002/adma.201000786

[6]

Hwang S K, Bae I, Cho S M. High performance multi-level non-volatile polymer memory with solution-blended ferroelectric polymer/high-k insulators for low voltage operation[J]. Adv Funct Mater, 2013, 23: 5484. doi: 10.1002/adfm.v23.44

[7]

Tsai T D, Chang J W, Wen T C. Manipulating the hysteresis in poly(vinyl alcohol)-dielectric organic field-effect transistors toward memory elements[J]. Adv Funct Mater, 2013, 23: 4206. doi: 10.1002/adfm.v23.34

[8]

Majewski L A, Schroeder R, Grell M. One volt organic transistor[J]. Adv Mater, 2005, 17: 192. doi: 10.1002/(ISSN)1521-4095

[9]

Zirkl M, Haase A, Fian A. Low-voltage organic thin-film transistors with high-k nanocomposite gate dielectrics for flexible electronics and optothermal sensors[J]. Adv Mater, 2007, 19: 2241. doi: 10.1002/(ISSN)1521-4095

[10]

Lee B H, Ryu M K, Choi S Y. Rapid vapor-phase fabrication of organic-inorganic hybrid superlattices with monolayer precision[J]. J Am Chem Soc, 2007, 129: 16034. doi: 10.1021/ja075664o

[11]

Park B, Cho S E, Kim Y. Simultaneous study of exciton diffusion/dissociation and charge transport in a donor-acceptor bilayer:pentacene on a C60-terminated self-assembled monolayer[J]. Adv Mater, 2013, 25: 6453. doi: 10.1002/adma.v25.44

[12]

Ulman A. Formation and structure of self-assembled monolayers[J]. Chem Rev, 1996, 96: 1533. doi: 10.1021/cr9502357

[13]

Onclin S, Ravoo B J, Reinhoudt D N. Engineering silicon oxide surfaces using self-assembled monolayers using self-assembled monolayers[J]. Angew Chem Int. Ed, 2005, 44: 6282. doi: 10.1002/(ISSN)1521-3773

[14]

Walter S R, Youn J, Emery J D. In-situ probe of gate dielectric-semiconductor interfacial order in organic transistors:origin and control of large performance sensitivities[J]. J Am Chem Soc, 2012, 134(28): 11726. doi: 10.1021/ja3036493

[15]

Halik M, Hirsch A. The potential of molecular self-assembled monolayers in organic electronic devices[J]. Adv Mater, 2011, 23: 2689. doi: 10.1002/adma.v23.22/23

[16]

Silverman B M, Wieghaus K A, Schwartz J. Comparative properties of siloxane vs phosphonate monolayers on a key titanium alloy[J]. Langmuir, 2005, 21: 225. doi: 10.1021/la048227l

[17]

Liakos I L, McAlpine E, Chen X Y. Assembly of octadecyl phosphonic acid on the α-Al2O3 (0001) surface of air annealed alumina:evidence for termination dependent adsorption[J]. Appl Surf Sci, 2008, 255(5): 3276. doi: 10.1016/j.apsusc.2008.09.037

[18]

Hanson E L, Schwartz J, Nickel B. Bonding self-assembled, compact organophosphonate monolayers to the native oxide surface of silicon[J]. J Am Chem Soc, 2003, 125(51): 16074. doi: 10.1021/ja035956z

[19]

Guo X, Qin C J, Cheng Y X. White electroluminescence from a phosphonate-functionalized single-polymer system with electron-trapping effect[J]. Adv Mater, 2009, 21: 3682. doi: 10.1002/adma.v21:36

[20]

Kang M S, Ma H, Yip H L. Direct surface functionalization of indium tin oxide via electrochemically induced assembly[J]. J Mater Chem, 2007, 17: 3489. doi: 10.1039/b705559e

[21]

Klauk H, Zschieschang U, Pflaum J. Ultralow-power organic complementary circuits[J]. Nature, 2007, 445: 745. doi: 10.1038/nature05533

[22]

Jurchescu O D, Meetsma A, Palstra T T M. Low-temperature structure of rubrene single crystals grown by vapor transport[J]. Acta Crystallographica Section B:Structural Science, 2006, 62: 330. doi: 10.1107/S0108768106003053

[23]

Yang S Y, Shin K, Park C E. The effect of gate-dielectric surface energy on pentacene morphology and organic field-effect transistor characteristics[J]. Adv Funct Mater, 2005, 15: 1806. doi: 10.1002/(ISSN)1616-3028

[1]

Jie Wu, Junfei Shi, Chengyuan Dong, Zhongfei Zou, Yuting Chen, Daxiang Zhou, Zhe Hu, Runze Zhan. Effect of active layer deposition temperature on the performance of sputtered amorphous In-Ga-Zn-O thin film transistors. J. Semicond., 2014, 35(1): 014003. doi: 10.1088/1674-4926/35/1/014003

[2]

Yongli He, Xiangyu Wang, Ya Gao, Yahui Hou, Qing Wan. Oxide-based thin film transistors for flexible electronics. J. Semicond., 2018, 39(1): 011005. doi: 10.1088/1674-4926/39/1/011005

[3]

Paragjyoti Gogoi, Rajib Saikia, Sanjib Changmai. Top gate ZnO-Al2O3 thin film transistors fabricated using a chemical bath deposition technique. J. Semicond., 2015, 36(4): 044002. doi: 10.1088/1674-4926/36/4/044002

[4]

Zhu Xiaming, Wu Huizhen, Wang Shuangjiang, Zhang Yingying, Cai Chunfeng, Si Jianxiao, Yuan Zijian, Du Xiaoyang, Dong Shurong. Optical and electrical properties of N-doped ZnO and fabrication of thin-film transistors. J. Semicond., 2009, 30(3): 033001. doi: 10.1088/1674-4926/30/3/033001

[5]

Zeng Yuxin, Liu Wei, Yang Fuhua, Xu Ping, Zhang Hao, Bian Lifeng, Tan Pingheng, Zheng Houzhi, Zeng Yiping. Optical and Electrical Investigation of Embedded Self-Assembled InAs Quantum Dot Modulation Doped Field-Effect-Transistors. J. Semicond., 2005, 26(S1): 238.

[6]

Deng Wanling, Zheng Xueren. Modeling of self-heating effects in polycrystalline silicon thin film transistors. J. Semicond., 2009, 30(7): 074002. doi: 10.1088/1674-4926/30/7/074002

[7]

Liu Zhaojun, Meng Zhiguo, Zhao Sunyun, Wong Man, Kwok H S, Wu Chunya, Xiong Shaozhen. Metal Induced Lateral Crystallization Poly-Si Thin Film Transistors of Self-Released Nickel Source. J. Semicond., 2008, 29(10): 2009.

[8]

Lou Chaogang, Li Xianjie, Zhang Xiaobing, Lei Wei. Control of Growth of Self-Assembled Semiconductor Quantum Dots. J. Semicond., 2005, 26(S1): 78.

[9]

I. M. Afandiyeva, Ş. Altιndal, L. K. Abdullayeva, A. İ. Bayramova. Self-assembled patches in PtSi/n-Si (111) diodes. J. Semicond., 2018, 39(5): 054002. doi: 10.1088/1674-4926/39/5/054002

[10]

Li Fanghua, Jiang Zuimin. Growth and Shape Preservation of Self-Assembled SiGe Quantum Rings. J. Semicond., 2006, 27(S1): 148.

[11]

Zhan Feng, Huang Shesong, Ni Haiqiao, Zhao Huan, Xiong Yonghua, Zhou Hongyu, Niu Zhichuan. GaAs Nanostructures Formed by Self-Assembled Droplet Epitaxy. J. Semicond., 2007, 28(S1): 141.

[12]

Niu Zhichuan, Ni Haiqiao, Fang Zhidan, Gong Zheng, Zhang Shiyong, Wu Donghai, Sun Zheng, Zhao Huan, Peng Hongling, Han Qin, Wu Ronghan. 1.3μm InGaAs/InAs/GaAs Self-Assembled Quantum Dot Laser Diode Grown by Molecular Beam Epitaxy. J. Semicond., 2006, 27(3): 482.

[13]

Du Jun, Wang Qingpu, Balocco C, Song A M. Room-Temperature Operated and Fully Gate-Bias Controlled Memory Devices Based on Self-Assembled InAs/GaAs Quantum Dots. J. Semicond., 2006, 27(2): 363.

[14]

Poornima Mittal, Y.S. Negi, R.K. Singh. Impact of source and drain contact thickness on the performance of organic thin film transistors. J. Semicond., 2014, 35(12): 124002. doi: 10.1088/1674-4926/35/12/124002

[15]

Dai Zhenqing, Zhang Liying, Chen Changxin, Qian Bingjian, Xu Dong, Chen Haiyan, Wei Liangming, Zhang Yafei. Fabrication of SiC nanowire thin-film transistors using dielectrophoresis. J. Semicond., 2012, 33(11): 114001. doi: 10.1088/1674-4926/33/11/114001

[16]

Wu Huizhen, Liang Jun, Lao Yanfeng, Yu Ping, Xu Tianning, Qiu Dongjiang. Electrical Properties of Wide Bandgap ZnMgO and Fabricationof Transparent Thin Film Transistors. J. Semicond., 2006, 27(S1): 218.

[17]

Zhang Xin’an, Zhang Jingwen, Yang Xiaodong, Lou Hui, , Liu Zhenling, Zhang Weifeng. Fabrication of ZnO Thin-Film Transistors by L-MBE. J. Semicond., 2006, 27(6): 1051.

[18]

G K Dayananda, C Shantharama Rai, A Jayarama, Hyun Jae Kim. Simulation model for electron irradiated IGZO thin film transistors. J. Semicond., 2018, 39(2): 022002. doi: 10.1088/1674-4926/39/2/022002

[19]

Jiazhen Sheng, Ki-Lim Han, TaeHyun Hong, Wan-Ho Choi, Jin-Seong Park. Review of recent progresses on flexible oxide semiconductor thin film transistors based on atomic layer deposition processes. J. Semicond., 2018, 39(1): 011008. doi: 10.1088/1674-4926/39/1/011008

[20]

Meng Zhiguo, Wong Man, Wu Chunya, Li Juan, Kwok H S, Xiong Shaozhen, Zhang Fang. Laser Post-Treated Metal-Induced Unilaterally CrystallizedPolycrystalline Silicon Thin Film Transistors. J. Semicond., 2006, 27(10): 1794.

Search

Advanced Search >>

GET CITATION

Z F Li, X Y Luo. ADO-phosphonic acid self-assembled monolayer modified dielectrics for organic thin film transistors[J]. J. Semicond., 2014, 35(10): 104004. doi: 10.1088/1674-4926/35/10/104004.

Export: BibTex EndNote

Article Metrics

Article views: 423 Times PDF downloads: 6 Times Cited by: 0 Times

History

Manuscript received: 26 March 2014 Manuscript revised: 14 May 2014 Online: Published: 01 October 2014

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误