J. Semicond. > Volume 35 > Issue 11 > Article Number: 114002

Comparative study of leakage power in CNTFET over MOSFET device

Sanjeet Kumar Sinha and Saurabh Chaudhury ,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: A comparison of the CNTFET device with the MOSFET device in the nanometer regime is reported. The characteristics of both devices are observed as varying the oxide thickness.Thereafter, we have analyzed the effect of the chiral vector and the temperature on the threshold voltage of the CNTFET device.After simulation on the HSPICE tool, we observed that the high threshold voltage can be achieved at a low chiral vector pair.It is also observed that the effect of temperature on the threshold voltage of the CNTFET is negligibly small.After that, we have analyzed the channel length variation and their impact on the threshold voltage of the CNTFET as well as MOSFET devices.We found an anomalous effect from our simulation result that the threshold voltage increases with decreasing the channel length in CNTFET devices; this is contrary to the well known short channel effect. It is observed that at below the 10 nm channel length, the threshold voltage is increased rapidly in the case of the CNTFET device, whereas in the case of the MOSFET device, the threshold voltage decreases drastically.

Key words: MOSFETCNTFETtemperatureoxide thicknessthreshold voltagechannel length

Abstract: A comparison of the CNTFET device with the MOSFET device in the nanometer regime is reported. The characteristics of both devices are observed as varying the oxide thickness.Thereafter, we have analyzed the effect of the chiral vector and the temperature on the threshold voltage of the CNTFET device.After simulation on the HSPICE tool, we observed that the high threshold voltage can be achieved at a low chiral vector pair.It is also observed that the effect of temperature on the threshold voltage of the CNTFET is negligibly small.After that, we have analyzed the channel length variation and their impact on the threshold voltage of the CNTFET as well as MOSFET devices.We found an anomalous effect from our simulation result that the threshold voltage increases with decreasing the channel length in CNTFET devices; this is contrary to the well known short channel effect. It is observed that at below the 10 nm channel length, the threshold voltage is increased rapidly in the case of the CNTFET device, whereas in the case of the MOSFET device, the threshold voltage decreases drastically.

Key words: MOSFETCNTFETtemperatureoxide thicknessthreshold voltagechannel length



References:

[1]

Moore G. Progress in digital electronics[J]. IEDM Tech Digest, 1975: 11.

[2]

ITRS 2011. http://www.itrs.net/

[3]

McEuen P L, Fuhrer M S, Park H K. Single-walled carbon nanotube electronics[J]. IEEE Trans Nanotechnol, 2002, 1(1): 78. doi: 10.1109/TNANO.2002.1005429

[4]

Hoenlein W. New prospects for microelectronics:carbon nanotubes[J]. Jpn J Appl Phys, 2002, 41: 4370. doi: 10.1143/JJAP.41.4370

[5]

Martel R, Schmidt T, Shea H R. Single and multi-wall carbon nanotube field-effect transistors[J]. Appl Phys Lett, 1998, 73(17): 2447. doi: 10.1063/1.122477

[6]

Javey A, Guo J, Wang Q. Ballistic carbon nanotube fieldeffect transistors[J]. Nature, 2003, 424: 654. doi: 10.1038/nature01797

[7]

Baughman R H, Zhakidov A A, DeHeer W A. Carbon nanotubesthe route toward applications[J]. Science, 2002, 297: 787. doi: 10.1126/science.1060928

[8]

Collins P G, Avouris P. Nanotubes for electronics[J]. Sci Amer, 2000, 12: 62.

[9]

Mintmire J W, White C T. Universal density of states for carbon nanotubes[J]. Phys Rev Lett, 1998, 81(12): 2506. doi: 10.1103/PhysRevLett.81.2506

[10]

Ijiima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354: 56. doi: 10.1038/354056a0

[11]

Raychowdhury A, Mukhopadhyay S, Roy K. A circuitcompatible model of ballistic carbon nanotube field-effect transistors[J]. IEEE Trans Comput Aided Design Integr Circuits Syst, 2004, 23(10): 1411. doi: 10.1109/TCAD.2004.835135

[12]

Fregonese S, d'Honincthun H C, Goguet J. Computationally efficient physics-based compact CNTFET model for circuit design[J]. IEEE Trans Electron Devices, 2008, 55(6): 1317. doi: 10.1109/TED.2008.922494

[13]

Deng J, Wong H S P. A compact SPICE model for carbon nanotube field-effect transistors including non-idealities and its application-Part Ⅰ:model of the intrinsic channel region[J]. IEEE Trans Electron Devices, 2007, 54(12): 3186. doi: 10.1109/TED.2007.909030

[14]

Pu S N, Yin W Y, Mao J F. Crosstalk prediction of singleand double-walled carbon-nanotube (SWCNT/DWCNT) bundle interconnects[J]. IEEE Trans Electron Devices, 2009, 56(4): 560. doi: 10.1109/TED.2009.2014429

[15]

Dekker C. Carbon nanotubes as molecular quantum wires[J]. Phys Today, 1999, 52(5): 22. doi: 10.1063/1.882658

[16]

Luryi S. Quantum capacitance devices[J]. Appl Phys Lett, 1998, 52: 501.

[17]

Dresselhaus M S, Dresselhaus G, Riichiro S. Carbon fibers based on C60 and their symmetry[J]. Phys Rev B, 1992, 45(11): 6234. doi: 10.1103/PhysRevB.45.6234

[18]

Wei B Q, Vajtai R, Ajayan P M. Reliability and current carrying capacity of carbon nanotubes[J]. Appl Phys Lett, 2001, 79(8): 1172. doi: 10.1063/1.1396632

[19]

Appenzeller J. Carbon nanotubes for high-performance electronics:progress and prospect[J]. Proc IEEE, 2008, 96(12): 201.

[20]

Terada K, Muta H. A new method to determine effective MOSFET channel length[J]. Jpn J Appl Phys, 1979, 18: 953. doi: 10.1143/JJAP.18.953

[21]

Chern J G J, Chang P, Motta R F. A new method to determine MOSFET channel length[J]. IEEE Electron Device Lett, 1980, EDL-1: 170.

[22]

Taur Y, Mii Y J, Logan R. On effective channel length in 0.1μm MOS FET's[J]. IEEE Electron Device Lett, 1995, 16: 136. doi: 10.1109/55.372493

[23]

Jain S. Measurement of threshold voltage and channel length of submicron MOSFET's[J]. Proc Inst Elect Eng, 1988, 135(1): 162.

[1]

Moore G. Progress in digital electronics[J]. IEDM Tech Digest, 1975: 11.

[2]

ITRS 2011. http://www.itrs.net/

[3]

McEuen P L, Fuhrer M S, Park H K. Single-walled carbon nanotube electronics[J]. IEEE Trans Nanotechnol, 2002, 1(1): 78. doi: 10.1109/TNANO.2002.1005429

[4]

Hoenlein W. New prospects for microelectronics:carbon nanotubes[J]. Jpn J Appl Phys, 2002, 41: 4370. doi: 10.1143/JJAP.41.4370

[5]

Martel R, Schmidt T, Shea H R. Single and multi-wall carbon nanotube field-effect transistors[J]. Appl Phys Lett, 1998, 73(17): 2447. doi: 10.1063/1.122477

[6]

Javey A, Guo J, Wang Q. Ballistic carbon nanotube fieldeffect transistors[J]. Nature, 2003, 424: 654. doi: 10.1038/nature01797

[7]

Baughman R H, Zhakidov A A, DeHeer W A. Carbon nanotubesthe route toward applications[J]. Science, 2002, 297: 787. doi: 10.1126/science.1060928

[8]

Collins P G, Avouris P. Nanotubes for electronics[J]. Sci Amer, 2000, 12: 62.

[9]

Mintmire J W, White C T. Universal density of states for carbon nanotubes[J]. Phys Rev Lett, 1998, 81(12): 2506. doi: 10.1103/PhysRevLett.81.2506

[10]

Ijiima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354: 56. doi: 10.1038/354056a0

[11]

Raychowdhury A, Mukhopadhyay S, Roy K. A circuitcompatible model of ballistic carbon nanotube field-effect transistors[J]. IEEE Trans Comput Aided Design Integr Circuits Syst, 2004, 23(10): 1411. doi: 10.1109/TCAD.2004.835135

[12]

Fregonese S, d'Honincthun H C, Goguet J. Computationally efficient physics-based compact CNTFET model for circuit design[J]. IEEE Trans Electron Devices, 2008, 55(6): 1317. doi: 10.1109/TED.2008.922494

[13]

Deng J, Wong H S P. A compact SPICE model for carbon nanotube field-effect transistors including non-idealities and its application-Part Ⅰ:model of the intrinsic channel region[J]. IEEE Trans Electron Devices, 2007, 54(12): 3186. doi: 10.1109/TED.2007.909030

[14]

Pu S N, Yin W Y, Mao J F. Crosstalk prediction of singleand double-walled carbon-nanotube (SWCNT/DWCNT) bundle interconnects[J]. IEEE Trans Electron Devices, 2009, 56(4): 560. doi: 10.1109/TED.2009.2014429

[15]

Dekker C. Carbon nanotubes as molecular quantum wires[J]. Phys Today, 1999, 52(5): 22. doi: 10.1063/1.882658

[16]

Luryi S. Quantum capacitance devices[J]. Appl Phys Lett, 1998, 52: 501.

[17]

Dresselhaus M S, Dresselhaus G, Riichiro S. Carbon fibers based on C60 and their symmetry[J]. Phys Rev B, 1992, 45(11): 6234. doi: 10.1103/PhysRevB.45.6234

[18]

Wei B Q, Vajtai R, Ajayan P M. Reliability and current carrying capacity of carbon nanotubes[J]. Appl Phys Lett, 2001, 79(8): 1172. doi: 10.1063/1.1396632

[19]

Appenzeller J. Carbon nanotubes for high-performance electronics:progress and prospect[J]. Proc IEEE, 2008, 96(12): 201.

[20]

Terada K, Muta H. A new method to determine effective MOSFET channel length[J]. Jpn J Appl Phys, 1979, 18: 953. doi: 10.1143/JJAP.18.953

[21]

Chern J G J, Chang P, Motta R F. A new method to determine MOSFET channel length[J]. IEEE Electron Device Lett, 1980, EDL-1: 170.

[22]

Taur Y, Mii Y J, Logan R. On effective channel length in 0.1μm MOS FET's[J]. IEEE Electron Device Lett, 1995, 16: 136. doi: 10.1109/55.372493

[23]

Jain S. Measurement of threshold voltage and channel length of submicron MOSFET's[J]. Proc Inst Elect Eng, 1988, 135(1): 162.

[1]

Ji Feng, Xu Jingping, Lai P T, Chen Weibing, Li Yanping. 2D Threshold-Voltage Model for High-k Gate-Dielectric MOSFETs. J. Semicond., 2006, 27(10): 1725.

[2]

T. Chaudhary, G. Khanna. Analysis and impact of process variability on performance of junctionless double gate VeSFET. J. Semicond., 2017, 38(10): 104003. doi: 10.1088/1674-4926/38/10/104003

[3]

Shoubhik Gupta, Bahniman Ghosh, Shiromani Balmukund Rahi. Compact analytical model of double gate junction-less field effect transistor comprising quantum-mechanical effect. J. Semicond., 2015, 36(2): 024001. doi: 10.1088/1674-4926/36/2/024001

[4]

Gao Jinxia, Zhang Yimen, Zhang Yuming. Study of Electron Mobility in 4H-SiC Buried-Channel MOSFETs. J. Semicond., 2006, 27(2): 283.

[5]

V. M. Nikale, S. S. Shinde, C. H. Bhosale, K.Y. Rajpure. Physical properties of spray deposited CdTe thin films: PEC performance. J. Semicond., 2011, 32(3): 033001. doi: 10.1088/1674-4926/32/3/033001

[6]

Dai Zhenqing, Yang Ruixia, Yang Kewu. Temperature-Dependent 4H-SiC MOSFET Channel-Electron Mobility Model for Circuit Simulation. J. Semicond., 2007, 28(8): 1252.

[7]

Xu Bojuan, Du Gang, Xia Zhiliang, Zeng Lang, Han Ruqi, Liu Xiaoyan. Threshold Voltage Model of a Double-Gate MOSFET with Schottky Source and Drain. J. Semicond., 2007, 28(8): 1179.

[8]

Yuanjie Lü, Xubo Song, Zezhao He, Yuangang Wang, Xin Tan, Shixiong Liang, Cui Wei, Xingye Zhou, Zhihong Feng. Source-field-plated Ga2O3 MOSFET with a breakdown voltage of 550 V. J. Semicond., 2019, 40(1): 012803. doi: 10.1088/1674-4926/40/1/012803

[9]

Yan Liu, Jing Yan, Hongjuan Wang, Genquan Han. Temperature dependent IDS-VGS characteristics of an N-channel Si tunneling field-effect transistor with a germanium source on Si(110) substrate. J. Semicond., 2014, 35(2): 024001. doi: 10.1088/1674-4926/35/2/024001

[10]

Chen Liu, Yuming Zhang, Yimen Zhang, Hongliang Lü, Bin Lu. Temperature dependent interfacial and electrical characteristics during atomic layer deposition and annealing of HfO2 films in p-GaAs metal-oxide-semiconductor capacitors. J. Semicond., 2015, 36(12): 124003. doi: 10.1088/1674-4926/36/12/124003

[11]

Tang Junxiong, Tang Minghua, Yang Feng, Zhang Junjie, Zhou Yichun, Zheng Xuejun. A Temperature-Dependent Model for Threshold Voltage and Potential Distribution of Fully Depleted SOI MOSFETs. J. Semicond., 2008, 29(1): 45.

[12]

Bowen Zhang, Xiaoling Zhang, Wenwen Xiong, Shuojie She, Xuesong Xie. The investigation of the zero temperature coefficient point of power MOSFET. J. Semicond., 2016, 37(6): 064011. doi: 10.1088/1674-4926/37/6/064011

[13]

Daoxun Wu, Lingli Jiang, Hang Fan, Jian Fang, Bo Zhang. Analysis on the positive dependence of channel length on ESD failure current of a GGNMOS in a 5 V CMOS. J. Semicond., 2013, 34(2): 024004. doi: 10.1088/1674-4926/34/2/024004

[14]

Wang Yuan, Chen Zhongjian, Jia Song, Lu Wengao, Fu Yiling, Ji Lijiu. Novel Electrostatic Discharge Protection Design Method. J. Semicond., 2007, 28(7): 1156.

[15]

Lu Jingxue, Huang Fengyi, Wang Zhigong, Wu Wengang. Refinement of an Analytical Approximation of the Surface Potential in MOSFETs. J. Semicond., 2006, 27(7): 1155.

[16]

Peng Shaoquan, Du Lei, Zhuang Yiqi, Bao Junlin, Liu Jiang, Su Yahui. A Forecast Technique for Radiation-Resistant Capability on MOSFETs. J. Semicond., 2008, 29(7): 1360.

[17]

Yu Zhiping, Tian Lilin. Device Simulation of Nano-Scale MOSFETs Based on Bandstructure Calculation. J. Semicond., 2006, 27(S1): 248.

[18]

Wu Dinghe, Shen Meng, Shao Xuefeng, Yu Hongkun. EOS Failure Analysis and Die Attach Optimization. J. Semicond., 2008, 29(2): 381.

[19]

Han Ru, Li Cong, Yang Yintang, Jia Hujun. Analysis of Early Voltage in 4H-SiC BJTs. J. Semicond., 2007, 28(9): 1433.

[20]

Kamal Zeghdar, Lakhdar Dehimi, Achour Saadoune, Nouredine Sengouga. Inhomogeneous barrier height effect on the current-voltage characteristics of an Au/n-InP Schottky diode. J. Semicond., 2015, 36(12): 124002. doi: 10.1088/1674-4926/36/12/124002

Search

Advanced Search >>

GET CITATION

S K Sinha, S Chaudhury. Comparative study of leakage power in CNTFET over MOSFET device[J]. J. Semicond., 2014, 35(11): 114002. doi: 10.1088/1674-4926/35/11/114002.

Export: BibTex EndNote

Article Metrics

Article views: 1369 Times PDF downloads: 27 Times Cited by: 0 Times

History

Manuscript received: 22 April 2014 Manuscript revised: 04 June 2014 Online: Published: 01 November 2014

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误