J. Semicond. > Volume 35 > Issue 11 > Article Number: 114003

Compact analytical model for single gate AlInSb/InSb high electron mobility transistors

S. Theodore Chandra , N.B. Balamurugan , G. Subalakshmi , T. Shalini and G. Lakshmi Priya

+ Author Affiliations + Find other works by these authors

PDF

Abstract: We have developed a 2D analytical model for the single gate AlInSb/InSb HEMT device by solving the Poisson equation using the parabolic approximation method. The developed model analyses the device performance by calculating the parameters such as surface potential, electric field distribution and drain current. The high mobility of the AlInSb/InSb quantum makes this HEMT ideal for high frequency, high power applications. The working of the single gate AlInSb/InSb HEMT device is studied by considering the variation of gate source voltage, drain source voltage, and channel length under the gate region and temperature. The carrier transport efficiency is improved by uniform electric field along the channel and the peak values near the source and drain regions. The results from the analytical model are compared with that of numerical simulations (TCAD) and a good agreement between them is achieved.

Key words: high electron mobility transistorAlInSb/InSb quantum well2D analytical modelPoisson's equationsurface potentialelectric field

Abstract: We have developed a 2D analytical model for the single gate AlInSb/InSb HEMT device by solving the Poisson equation using the parabolic approximation method. The developed model analyses the device performance by calculating the parameters such as surface potential, electric field distribution and drain current. The high mobility of the AlInSb/InSb quantum makes this HEMT ideal for high frequency, high power applications. The working of the single gate AlInSb/InSb HEMT device is studied by considering the variation of gate source voltage, drain source voltage, and channel length under the gate region and temperature. The carrier transport efficiency is improved by uniform electric field along the channel and the peak values near the source and drain regions. The results from the analytical model are compared with that of numerical simulations (TCAD) and a good agreement between them is achieved.

Key words: high electron mobility transistorAlInSb/InSb quantum well2D analytical modelPoisson's equationsurface potentialelectric field



References:

[1]

Ambacher O. Growth and applications of group Ⅲ-nitrides[J]. J Phys D:Appl Phys, 1998, 31: 2653. doi: 10.1088/0022-3727/31/20/001

[2]

Paskova T, Hanser D A, Evans K R. GaN substrate for Ⅲ nitride devices[J]. IEEE Trans Electron Devices, 2010, 98(7): 1324.

[3]

Palacios T, Chakraborty A, Heikman S. AlGaN/GaN high electron mobility transistors with InGaN back-barriers[J]. IEEE Electron Device Lett, 2006, 27(1): 13. doi: 10.1109/LED.2005.860882

[4]

Kruppa W, Boos J B, Bennett B R. Low-frequency noise in AlSb/InAs and related HEMTs[J]. IEEE Trans Electron Devices, 2007, 54(5): 1193. doi: 10.1109/TED.2007.893658

[5]

Kharche1 N, Klimeck G, Kim D H. Performance analysis of ultra-scaled InAs HEMTs[J]. IEEE International Electron Devices Meeting (IEDM), 2009: 1.

[6]

Moschetti G, Zhao H, Nilsson P A. Anisotropic transport properties in InAs/AlSb heterostructures[J]. Appl Phys Lett, 2010, 97: 243510. doi: 10.1063/1.3527971

[7]

Ohno Y, Kuzuhara M. Application of GaN-based heterojunction FETs for advanced wireless communication[J]. IEEE Trans Electron Devices, 2001, 48(3): 517. doi: 10.1109/16.906445

[8]

Boos J B, Bennett B R, Papanicolaou N A. Sb-based n-and p-channel heterostructure FETs for high-speed, low-power applications[J]. IEICE Trans Electron, 2008, E91-C(7): 1050. doi: 10.1093/ietele/e91-c.7.1050

[9]

Kumar S P, Agrawal A, Chaujar R. Threshold voltage model for small geometry AlGaN/GaN HEMTs based on analytical solution of 3-D Poisson's equation[J]. Microelectron J, 2007, 4, 38: 1013.

[10]

Yoon S F, Gay B P, Zheng H Q. Fabrication of strained and double heterojunction InGaP/InGaAs high electron mobility transistors grown by solid-source molecular beam epitaxy[J]. IEEE Trans Electron Devices, 2000, 47(5): 2255.

[11]

Khandelwal S, Goyal N, Fjedly A T. A physics-based analytical model for 2DEG charge density in AlGaN/GaN HEMT devices[J]. IEEE Trans Electron Devices, 2011, 58(10): 3622. doi: 10.1109/TED.2011.2161314

[12]

Lee K, Shur M S, Drummond T J. Current-voltage and capacitance-voltage characteristics of modulation-doped field-effect transistors[J]. IEEE Trans Electron Devices, 1983, 30(3): 207. doi: 10.1109/T-ED.1983.21101

[13]

Lin J C, Yang P Y, Tsai W C. Simulation and analysis of metamorphic high electron mobility transistors[J]. Microelectron J, 2007, 38: 251. doi: 10.1016/j.mejo.2006.11.004

[14]

Colinge J P. FinFETs and other multi-gate transistors[J]. Springer, 2007.

[15]

Sentaurus Device User Guide, Synopsys Inc. , Version D-2010. 03

[16]

Sze S M. Physics of semiconductor devices. 2nd ed. New York:Wiley, 2004:438

[1]

Ambacher O. Growth and applications of group Ⅲ-nitrides[J]. J Phys D:Appl Phys, 1998, 31: 2653. doi: 10.1088/0022-3727/31/20/001

[2]

Paskova T, Hanser D A, Evans K R. GaN substrate for Ⅲ nitride devices[J]. IEEE Trans Electron Devices, 2010, 98(7): 1324.

[3]

Palacios T, Chakraborty A, Heikman S. AlGaN/GaN high electron mobility transistors with InGaN back-barriers[J]. IEEE Electron Device Lett, 2006, 27(1): 13. doi: 10.1109/LED.2005.860882

[4]

Kruppa W, Boos J B, Bennett B R. Low-frequency noise in AlSb/InAs and related HEMTs[J]. IEEE Trans Electron Devices, 2007, 54(5): 1193. doi: 10.1109/TED.2007.893658

[5]

Kharche1 N, Klimeck G, Kim D H. Performance analysis of ultra-scaled InAs HEMTs[J]. IEEE International Electron Devices Meeting (IEDM), 2009: 1.

[6]

Moschetti G, Zhao H, Nilsson P A. Anisotropic transport properties in InAs/AlSb heterostructures[J]. Appl Phys Lett, 2010, 97: 243510. doi: 10.1063/1.3527971

[7]

Ohno Y, Kuzuhara M. Application of GaN-based heterojunction FETs for advanced wireless communication[J]. IEEE Trans Electron Devices, 2001, 48(3): 517. doi: 10.1109/16.906445

[8]

Boos J B, Bennett B R, Papanicolaou N A. Sb-based n-and p-channel heterostructure FETs for high-speed, low-power applications[J]. IEICE Trans Electron, 2008, E91-C(7): 1050. doi: 10.1093/ietele/e91-c.7.1050

[9]

Kumar S P, Agrawal A, Chaujar R. Threshold voltage model for small geometry AlGaN/GaN HEMTs based on analytical solution of 3-D Poisson's equation[J]. Microelectron J, 2007, 4, 38: 1013.

[10]

Yoon S F, Gay B P, Zheng H Q. Fabrication of strained and double heterojunction InGaP/InGaAs high electron mobility transistors grown by solid-source molecular beam epitaxy[J]. IEEE Trans Electron Devices, 2000, 47(5): 2255.

[11]

Khandelwal S, Goyal N, Fjedly A T. A physics-based analytical model for 2DEG charge density in AlGaN/GaN HEMT devices[J]. IEEE Trans Electron Devices, 2011, 58(10): 3622. doi: 10.1109/TED.2011.2161314

[12]

Lee K, Shur M S, Drummond T J. Current-voltage and capacitance-voltage characteristics of modulation-doped field-effect transistors[J]. IEEE Trans Electron Devices, 1983, 30(3): 207. doi: 10.1109/T-ED.1983.21101

[13]

Lin J C, Yang P Y, Tsai W C. Simulation and analysis of metamorphic high electron mobility transistors[J]. Microelectron J, 2007, 38: 251. doi: 10.1016/j.mejo.2006.11.004

[14]

Colinge J P. FinFETs and other multi-gate transistors[J]. Springer, 2007.

[15]

Sentaurus Device User Guide, Synopsys Inc. , Version D-2010. 03

[16]

Sze S M. Physics of semiconductor devices. 2nd ed. New York:Wiley, 2004:438

[1]

S. Theodore Chandra, N. B. Balamurugan, M. Bhuvaneswari, N. Anbuselvan, N. Mohankumar. Analysis of charge density and Fermi level of AlInSb/InSb single-gate high electron mobility transistor. J. Semicond., 2015, 36(6): 064003. doi: 10.1088/1674-4926/36/6/064003

[2]

T. S. Arun Samuel, N. B. Balamurugan. Analytical modeling and simulation of germanium single gate silicon on insulator TFET. J. Semicond., 2014, 35(3): 034002. doi: 10.1088/1674-4926/35/3/034002

[3]

Chen Weili, Xiao Jinglin. Bound Polaron in a Quantum Well Under an Electric Field. J. Semicond., 2006, 27(5): 787.

[4]

Huifang Xu, Yuehua Dai, Ning Li, Jianbin Xu. A 2-D semi-analytical model of double-gate tunnel field-effect transistor. J. Semicond., 2015, 36(5): 054002. doi: 10.1088/1674-4926/36/5/054002

[5]

Xu Wenjie, Sun Lingling, Liu Jun, Li Wenjun, Zhang Haipeng, Wu Yanming, He Jia. A Continuous and Analytical Surface Potential Model for SOI LDMOS. J. Semicond., 2007, 28(11): 1712.

[6]

Lu Jingxue, Huang Fengyi, Wang Zhigong, Wu Wengang. Refinement of an Analytical Approximation of the Surface Potential in MOSFETs. J. Semicond., 2006, 27(7): 1155.

[7]

Jie Wang, Lingling Sun, Jun Liu, Mingzhu Zhou. A surface-potential-based model for AlGaN/AlN/GaN HEMT. J. Semicond., 2013, 34(9): 094002. doi: 10.1088/1674-4926/34/9/094002

[8]

A. J. Fotue, N. Issofa, M. Tiotsop, S. C. Kenfack, M. P. Tabue Djemmo, H. Fotsin, L. C. Fai. Electric and magnetic optical polaron in quantum dot——Part 1: strong coupling. J. Semicond., 2015, 36(7): 072001. doi: 10.1088/1674-4926/36/7/072001

[9]

Li Xiyue, Deng Wanling, Huang Junkai. A physical surface-potential-based drain current model for polysilicon thin-film transistors. J. Semicond., 2012, 33(3): 034005. doi: 10.1088/1674-4926/33/3/034005

[10]

Jie Fan, Bo Zhang, Xiaorong Luo, Zhigang Wang, Zhaoji Li. Analytical model for high-voltage SOI device with composite-k dielectric buried layer. J. Semicond., 2013, 34(9): 094008. doi: 10.1088/1674-4926/34/9/094008

[11]

Xiaoyu Ma, Wanling Deng, Junkai Huang. Explicit solution of channel potential and drain current model in symmetric double-gate polysilicon TFTs. J. Semicond., 2014, 35(3): 032002. doi: 10.1088/1674-4926/35/3/032002

[12]

Chih-Tang Sah, Bin B.Jie. The Bipolar Field-Effect Transistor:II.Drift-Diffusion Current Theory(Two-MOS-Gates on Pure-Base). J. Semicond., 2007, 28(12): 1849.

[13]

Jie Binbin, Sah Chih-Tang. The Bipolar Field-Effect Transistor:III.Short Channel Electrochemical Current Theory(Two-MOS-Gates on Pure-Base). J. Semicond., 2008, 29(1): 1.

[14]

Jie Binbin, Sah Chih-Tang. The Bipolar Field-Effect Transistor:IV.Short Channel Drift-Diffusion Current Theory(Two-MOS-Gates on Pure-Base). J. Semicond., 2008, 29(2): 193.

[15]

Sah Chih-Tang, Jie Binbin. The Theory of Field-Effect Transistors: XI.The Bipolar Electrochemical Currents (1-2-MOS-Gates on Thin-Thick Pure-Impure Base). J. Semicond., 2008, 29(3): 397.

[16]

Jie Binbin, Sah Chih-Tang. The Theory of Field-Effect Transistors XII.The Bipolar Drift and Diffusion Currents(1-2-MOS-Gates on Thin-Thick Pure-Impure Base). J. Semicond., 2008, 29(7): 1227.

[17]

Rajiv Sharma, Sujata Pandey, Shail Bala Jain. Analytical modeling of drain current and RF performance for double-gate fully depleted nanoscale SOI MOSFETs. J. Semicond., 2012, 33(2): 024001. doi: 10.1088/1674-4926/33/2/024001

[18]

Runiu Fang, Xin Sun, Min Miao, Yufeng Jin. Novel through-silicon vias for enhanced signal integrity in 3D integrated systems. J. Semicond., 2016, 37(10): 106002. doi: 10.1088/1674-4926/37/10/106002

[19]

Jianbing Cheng, Xiaojuan Xia, Tong Jian, Yufeng Guo, Shujuan Yu, Hao Yang. Electric field optimized LDMOST using multiple decrescent and reverse charge regions. J. Semicond., 2014, 35(7): 074007. doi: 10.1088/1674-4926/35/7/074007

[20]

M. Tiotsop, A. J. Fotue, S. C. Kenfack, N. Issofa, A. V. Wirngo, M. P. Tabue Djemmo, H. Fotsin, L. C. Fai. Electro-magnetic weak coupling optical polaron and temperature effect in quantum dot. J. Semicond., 2015, 36(10): 102001. doi: 10.1088/1674-4926/36/10/102001

Search

Advanced Search >>

GET CITATION

S. T Chandra, N.B. Balamurugan, G. Subalakshmi, T. Shalini, G. L. Priya. Compact analytical model for single gate AlInSb/InSb high electron mobility transistors[J]. J. Semicond., 2014, 35(11): 114003. doi: 10.1088/1674-4926/35/11/114003.

Export: BibTex EndNote

Article Metrics

Article views: 1206 Times PDF downloads: 8 Times Cited by: 0 Times

History

Manuscript received: 30 April 2014 Manuscript revised: 09 June 2014 Online: Published: 01 November 2014

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误