S. T Chandra, N.B. Balamurugan, G. Subalakshmi, T. Shalini, G. L. Priya. Compact analytical model for single gate AlInSb/InSb high electron mobility transistors[J]. J. Semicond., 2014, 35(11): 114003. doi: 10.1088/1674-4926/35/11/114003.
S. Theodore Chandra , N.B. Balamurugan , G. Subalakshmi , T. Shalini and G. Lakshmi Priya
Abstract: We have developed a 2D analytical model for the single gate AlInSb/InSb HEMT device by solving the Poisson equation using the parabolic approximation method. The developed model analyses the device performance by calculating the parameters such as surface potential, electric field distribution and drain current. The high mobility of the AlInSb/InSb quantum makes this HEMT ideal for high frequency, high power applications. The working of the single gate AlInSb/InSb HEMT device is studied by considering the variation of gate source voltage, drain source voltage, and channel length under the gate region and temperature. The carrier transport efficiency is improved by uniform electric field along the channel and the peak values near the source and drain regions. The results from the analytical model are compared with that of numerical simulations (TCAD) and a good agreement between them is achieved.
Key words: high electron mobility transistor, AlInSb/InSb quantum well, 2D analytical model, Poisson's equation, surface potential, electric field
Abstract: We have developed a 2D analytical model for the single gate AlInSb/InSb HEMT device by solving the Poisson equation using the parabolic approximation method. The developed model analyses the device performance by calculating the parameters such as surface potential, electric field distribution and drain current. The high mobility of the AlInSb/InSb quantum makes this HEMT ideal for high frequency, high power applications. The working of the single gate AlInSb/InSb HEMT device is studied by considering the variation of gate source voltage, drain source voltage, and channel length under the gate region and temperature. The carrier transport efficiency is improved by uniform electric field along the channel and the peak values near the source and drain regions. The results from the analytical model are compared with that of numerical simulations (TCAD) and a good agreement between them is achieved.
Key words:
high electron mobility transistor, AlInSb/InSb quantum well, 2D analytical model, Poisson's equation, surface potential, electric field
References:
[1] |
Ambacher O. Growth and applications of group Ⅲ-nitrides[J]. J Phys D:Appl Phys, 1998, 31: 2653. doi: 10.1088/0022-3727/31/20/001 |
[2] |
Paskova T, Hanser D A, Evans K R. GaN substrate for Ⅲ nitride devices[J]. IEEE Trans Electron Devices, 2010, 98(7): 1324. |
[3] |
Palacios T, Chakraborty A, Heikman S. AlGaN/GaN high electron mobility transistors with InGaN back-barriers[J]. IEEE Electron Device Lett, 2006, 27(1): 13. doi: 10.1109/LED.2005.860882 |
[4] |
Kruppa W, Boos J B, Bennett B R. Low-frequency noise in AlSb/InAs and related HEMTs[J]. IEEE Trans Electron Devices, 2007, 54(5): 1193. doi: 10.1109/TED.2007.893658 |
[5] |
Kharche1 N, Klimeck G, Kim D H. Performance analysis of ultra-scaled InAs HEMTs[J]. IEEE International Electron Devices Meeting (IEDM), 2009: 1. |
[6] |
Moschetti G, Zhao H, Nilsson P A. Anisotropic transport properties in InAs/AlSb heterostructures[J]. Appl Phys Lett, 2010, 97: 243510. doi: 10.1063/1.3527971 |
[7] |
Ohno Y, Kuzuhara M. Application of GaN-based heterojunction FETs for advanced wireless communication[J]. IEEE Trans Electron Devices, 2001, 48(3): 517. doi: 10.1109/16.906445 |
[8] |
Boos J B, Bennett B R, Papanicolaou N A. Sb-based n-and p-channel heterostructure FETs for high-speed, low-power applications[J]. IEICE Trans Electron, 2008, E91-C(7): 1050. doi: 10.1093/ietele/e91-c.7.1050 |
[9] |
Kumar S P, Agrawal A, Chaujar R. Threshold voltage model for small geometry AlGaN/GaN HEMTs based on analytical solution of 3-D Poisson's equation[J]. Microelectron J, 2007, 4, 38: 1013. |
[10] |
Yoon S F, Gay B P, Zheng H Q. Fabrication of strained and double heterojunction InGaP/InGaAs high electron mobility transistors grown by solid-source molecular beam epitaxy[J]. IEEE Trans Electron Devices, 2000, 47(5): 2255. |
[11] |
Khandelwal S, Goyal N, Fjedly A T. A physics-based analytical model for 2DEG charge density in AlGaN/GaN HEMT devices[J]. IEEE Trans Electron Devices, 2011, 58(10): 3622. doi: 10.1109/TED.2011.2161314 |
[12] |
Lee K, Shur M S, Drummond T J. Current-voltage and capacitance-voltage characteristics of modulation-doped field-effect transistors[J]. IEEE Trans Electron Devices, 1983, 30(3): 207. doi: 10.1109/T-ED.1983.21101 |
[13] |
Lin J C, Yang P Y, Tsai W C. Simulation and analysis of metamorphic high electron mobility transistors[J]. Microelectron J, 2007, 38: 251. doi: 10.1016/j.mejo.2006.11.004 |
[14] |
Colinge J P. FinFETs and other multi-gate transistors[J]. Springer, 2007. |
[15] |
Sentaurus Device User Guide, Synopsys Inc. , Version D-2010. 03 |
[16] |
Sze S M. Physics of semiconductor devices. 2nd ed. New York:Wiley, 2004:438 |
[1] |
Ambacher O. Growth and applications of group Ⅲ-nitrides[J]. J Phys D:Appl Phys, 1998, 31: 2653. doi: 10.1088/0022-3727/31/20/001 |
[2] |
Paskova T, Hanser D A, Evans K R. GaN substrate for Ⅲ nitride devices[J]. IEEE Trans Electron Devices, 2010, 98(7): 1324. |
[3] |
Palacios T, Chakraborty A, Heikman S. AlGaN/GaN high electron mobility transistors with InGaN back-barriers[J]. IEEE Electron Device Lett, 2006, 27(1): 13. doi: 10.1109/LED.2005.860882 |
[4] |
Kruppa W, Boos J B, Bennett B R. Low-frequency noise in AlSb/InAs and related HEMTs[J]. IEEE Trans Electron Devices, 2007, 54(5): 1193. doi: 10.1109/TED.2007.893658 |
[5] |
Kharche1 N, Klimeck G, Kim D H. Performance analysis of ultra-scaled InAs HEMTs[J]. IEEE International Electron Devices Meeting (IEDM), 2009: 1. |
[6] |
Moschetti G, Zhao H, Nilsson P A. Anisotropic transport properties in InAs/AlSb heterostructures[J]. Appl Phys Lett, 2010, 97: 243510. doi: 10.1063/1.3527971 |
[7] |
Ohno Y, Kuzuhara M. Application of GaN-based heterojunction FETs for advanced wireless communication[J]. IEEE Trans Electron Devices, 2001, 48(3): 517. doi: 10.1109/16.906445 |
[8] |
Boos J B, Bennett B R, Papanicolaou N A. Sb-based n-and p-channel heterostructure FETs for high-speed, low-power applications[J]. IEICE Trans Electron, 2008, E91-C(7): 1050. doi: 10.1093/ietele/e91-c.7.1050 |
[9] |
Kumar S P, Agrawal A, Chaujar R. Threshold voltage model for small geometry AlGaN/GaN HEMTs based on analytical solution of 3-D Poisson's equation[J]. Microelectron J, 2007, 4, 38: 1013. |
[10] |
Yoon S F, Gay B P, Zheng H Q. Fabrication of strained and double heterojunction InGaP/InGaAs high electron mobility transistors grown by solid-source molecular beam epitaxy[J]. IEEE Trans Electron Devices, 2000, 47(5): 2255. |
[11] |
Khandelwal S, Goyal N, Fjedly A T. A physics-based analytical model for 2DEG charge density in AlGaN/GaN HEMT devices[J]. IEEE Trans Electron Devices, 2011, 58(10): 3622. doi: 10.1109/TED.2011.2161314 |
[12] |
Lee K, Shur M S, Drummond T J. Current-voltage and capacitance-voltage characteristics of modulation-doped field-effect transistors[J]. IEEE Trans Electron Devices, 1983, 30(3): 207. doi: 10.1109/T-ED.1983.21101 |
[13] |
Lin J C, Yang P Y, Tsai W C. Simulation and analysis of metamorphic high electron mobility transistors[J]. Microelectron J, 2007, 38: 251. doi: 10.1016/j.mejo.2006.11.004 |
[14] |
Colinge J P. FinFETs and other multi-gate transistors[J]. Springer, 2007. |
[15] |
Sentaurus Device User Guide, Synopsys Inc. , Version D-2010. 03 |
[16] |
Sze S M. Physics of semiconductor devices. 2nd ed. New York:Wiley, 2004:438 |
S. T Chandra, N.B. Balamurugan, G. Subalakshmi, T. Shalini, G. L. Priya. Compact analytical model for single gate AlInSb/InSb high electron mobility transistors[J]. J. Semicond., 2014, 35(11): 114003. doi: 10.1088/1674-4926/35/11/114003.
Article views: 1206 Times PDF downloads: 8 Times Cited by: 0 Times
Manuscript received: 30 April 2014 Manuscript revised: 09 June 2014 Online: Published: 01 November 2014
Journal of Semiconductors © 2017 All Rights Reserved 京ICP备05085259号-2