J. Semicond. > Volume 35 > Issue 3 > Article Number: 032001

Electronic structure of (InSb)m/(HgTe)n short period superlattices

Jian Li ,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: The electronic structure of (InSb)m/(HgTe)n short period superlattices grown along the (001) direction is studied theoretically using norm-conserving pseudo-potentials together with the local-density approximation for the exchange-correlation potential. The band structure depends on the value of m and n, the number of mono-layers and on the ordering of atoms at the InSb/HgTe interface in one unit cell. Our calculation indicates that the superlattice can be a semiconductor having a band gap between the occupied and unoccupied bands, or a metal with no band gap at the Fermi energy.According to the further calculation of total charge density between (InSb)m/(HgTe)n with different structures, a clearly different behavior happens when the structure changes from a system with a gap and a system without a gap.

Key words: (InSb)m/(HgTe)n superlatticesnorm-conserving pseudo-potentialelectronic band structure

Abstract: The electronic structure of (InSb)m/(HgTe)n short period superlattices grown along the (001) direction is studied theoretically using norm-conserving pseudo-potentials together with the local-density approximation for the exchange-correlation potential. The band structure depends on the value of m and n, the number of mono-layers and on the ordering of atoms at the InSb/HgTe interface in one unit cell. Our calculation indicates that the superlattice can be a semiconductor having a band gap between the occupied and unoccupied bands, or a metal with no band gap at the Fermi energy.According to the further calculation of total charge density between (InSb)m/(HgTe)n with different structures, a clearly different behavior happens when the structure changes from a system with a gap and a system without a gap.

Key words: (InSb)m/(HgTe)n superlatticesnorm-conserving pseudo-potentialelectronic band structure



References:

[1]

Yan B, Zhang S. Topological materials[J]. Rep Prog Phys, 2012, 75: 096501. doi: 10.1088/0034-4885/75/9/096501

[2]

Knez I, Du R R. Quantum spin Hall effect in inverted InAs/GaSb quantum wells[J]. Front Phys, 2012, 7(2): 200. doi: 10.1007/s11467-011-0204-1

[3]

Gouider F, Vasilyew Y B, Konemann J. THz detectors with HgTe and InSb quantum wells[J]. 35th International Conference on Infrared, Millimeter, and Terahertz Waves, Rome, Italy, 2010.

[4]

Christensen N. Dipole effects and band offsets at semiconductor interfaces[J]. Phys Rev B, 1998, 37(9): 4528.

[5]

Cohen M L, Bergstresser T K. Band structures and pseudopotential form factors for fourteen semiconductors of the diamond and zinc-blende structures[J]. Phys Rev, 1966, 141(2): 789. doi: 10.1103/PhysRev.141.789

[6]

Takeda T, Kübler J. Linear augmented plane wave method for self-consistent calculations[J]. J Phys F:Met Phys, 1979, 9(4): 661. doi: 10.1088/0305-4608/9/4/013

[7]

Hohenberg P, Kohn W. Inhomogeneous electron gas[J]. Phys Rev, 1964, 136(3B): 864. doi: 10.1103/PhysRev.136.B864

[8]

Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects[J]. Phys Rev, 1965, 140(4A): 1133. doi: 10.1103/PhysRev.140.A1133

[9]

Hamann D R, Schlüter M, Chiang C. Norm-consvering pseudopotentials[J]. Phys Rev Lett, 1979, 43(20): 1494. doi: 10.1103/PhysRevLett.43.1494

[10]

Pickett W E. Pseudopotential methonds in condensed matter applications[J]. Comput Phys Rep, 1989, 9: 115. doi: 10.1016/0167-7977(89)90002-6

[11]

Bachelet G B, Hamman D R, Schlüter M. Pseudopotentials that work:from H to Pu[J]. Phys Rev B, 1982, 26(8): 4199. doi: 10.1103/PhysRevB.26.4199

[12]

Ceperley D M, Alder B J. Ground state of the electron gas by a stochastic method[J]. Phys Rev Lett, 1980, 45(7): 566. doi: 10.1103/PhysRevLett.45.566

[13]

Perdew J P, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems[J]. Phys Rev B, 1981, 23(10): 5048. doi: 10.1103/PhysRevB.23.5048

[14]

Hartwigsen C, Goedecker S, Hutter J. Relativistic separable dual-space Gaussian pseudopotentials from H to Rn[J]. Phys Rev B, 1998, 58(7): 3641. doi: 10.1103/PhysRevB.58.3641

[15]

Walter J P, Cohen M L. Pseudopotential calculations of electronic charge densities in seven semiconductors[J]. Phys Rev B, 1971, 4(6): 1877. doi: 10.1103/PhysRevB.4.1877

[16]

Chadi D J, Cohe M L n. Electronic structure of Hg1-xCdxTe alloys and charge-density calculations using representative k points[J]. Phys Rev B, 1973, 7(2): 692. doi: 10.1103/PhysRevB.7.692

[1]

Yan B, Zhang S. Topological materials[J]. Rep Prog Phys, 2012, 75: 096501. doi: 10.1088/0034-4885/75/9/096501

[2]

Knez I, Du R R. Quantum spin Hall effect in inverted InAs/GaSb quantum wells[J]. Front Phys, 2012, 7(2): 200. doi: 10.1007/s11467-011-0204-1

[3]

Gouider F, Vasilyew Y B, Konemann J. THz detectors with HgTe and InSb quantum wells[J]. 35th International Conference on Infrared, Millimeter, and Terahertz Waves, Rome, Italy, 2010.

[4]

Christensen N. Dipole effects and band offsets at semiconductor interfaces[J]. Phys Rev B, 1998, 37(9): 4528.

[5]

Cohen M L, Bergstresser T K. Band structures and pseudopotential form factors for fourteen semiconductors of the diamond and zinc-blende structures[J]. Phys Rev, 1966, 141(2): 789. doi: 10.1103/PhysRev.141.789

[6]

Takeda T, Kübler J. Linear augmented plane wave method for self-consistent calculations[J]. J Phys F:Met Phys, 1979, 9(4): 661. doi: 10.1088/0305-4608/9/4/013

[7]

Hohenberg P, Kohn W. Inhomogeneous electron gas[J]. Phys Rev, 1964, 136(3B): 864. doi: 10.1103/PhysRev.136.B864

[8]

Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects[J]. Phys Rev, 1965, 140(4A): 1133. doi: 10.1103/PhysRev.140.A1133

[9]

Hamann D R, Schlüter M, Chiang C. Norm-consvering pseudopotentials[J]. Phys Rev Lett, 1979, 43(20): 1494. doi: 10.1103/PhysRevLett.43.1494

[10]

Pickett W E. Pseudopotential methonds in condensed matter applications[J]. Comput Phys Rep, 1989, 9: 115. doi: 10.1016/0167-7977(89)90002-6

[11]

Bachelet G B, Hamman D R, Schlüter M. Pseudopotentials that work:from H to Pu[J]. Phys Rev B, 1982, 26(8): 4199. doi: 10.1103/PhysRevB.26.4199

[12]

Ceperley D M, Alder B J. Ground state of the electron gas by a stochastic method[J]. Phys Rev Lett, 1980, 45(7): 566. doi: 10.1103/PhysRevLett.45.566

[13]

Perdew J P, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems[J]. Phys Rev B, 1981, 23(10): 5048. doi: 10.1103/PhysRevB.23.5048

[14]

Hartwigsen C, Goedecker S, Hutter J. Relativistic separable dual-space Gaussian pseudopotentials from H to Rn[J]. Phys Rev B, 1998, 58(7): 3641. doi: 10.1103/PhysRevB.58.3641

[15]

Walter J P, Cohen M L. Pseudopotential calculations of electronic charge densities in seven semiconductors[J]. Phys Rev B, 1971, 4(6): 1877. doi: 10.1103/PhysRevB.4.1877

[16]

Chadi D J, Cohe M L n. Electronic structure of Hg1-xCdxTe alloys and charge-density calculations using representative k points[J]. Phys Rev B, 1973, 7(2): 692. doi: 10.1103/PhysRevB.7.692

Search

Advanced Search >>

GET CITATION

J Li. Electronic structure of (InSb)m/(HgTe)n short period superlattices[J]. J. Semicond., 2014, 35(3): 032001. doi: 10.1088/1674-4926/35/3/032001.

Export: BibTex EndNote

Article Metrics

Article views: 1158 Times PDF downloads: 9 Times Cited by: 0 Times

History

Manuscript received: 28 August 2013 Manuscript revised: 11 October 2013 Online: Published: 01 March 2014

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误