J. Semicond. > Volume 35 > Issue 5 > Article Number: 055003

A 55-dB SNDR, 2.2-mW double chopper-stabilized analog front-end for a thermopile sensor

Chengying Chen , , Xiaoyu Hu , Jun Fan and Yong Hei

+ Author Affiliations + Find other works by these authors

PDF

Abstract: A double chopper-stabilized analog front-end (DCS-AFE) circuit for a thermopile sensor is presented, which includes a closed-loop front-end amplifier and a 2nd-order 1 bit quantization sigma-delta modulator. The amplifier with a closed-loop structure ensures the gain stability against the temperature. Moreover, by adopting the chopper-stabilized technique both for the amplifier and 2nd-order 1-bit quantization sigma-delta modulator, the low-frequency 1/f noise and offset is reduced and high resolution is achieved. The AFE is implemented in the SMIC 0.18 μm 1P6M CMOS process. The measurement results show that in a 3.3 V power supply, 1 Hz input frequency and 3KHz clock frequency, the peak signal-to-noise and distortion ratio (SNDR) is 55.4 dB, the effective number of bits (ENOB) is 8.92 bit, and in the range of -20 to 85 degrees, the detection resolution is 0.2 degree.

Key words: thermopilechopper-stabilizedamplifiermodulator

Abstract: A double chopper-stabilized analog front-end (DCS-AFE) circuit for a thermopile sensor is presented, which includes a closed-loop front-end amplifier and a 2nd-order 1 bit quantization sigma-delta modulator. The amplifier with a closed-loop structure ensures the gain stability against the temperature. Moreover, by adopting the chopper-stabilized technique both for the amplifier and 2nd-order 1-bit quantization sigma-delta modulator, the low-frequency 1/f noise and offset is reduced and high resolution is achieved. The AFE is implemented in the SMIC 0.18 μm 1P6M CMOS process. The measurement results show that in a 3.3 V power supply, 1 Hz input frequency and 3KHz clock frequency, the peak signal-to-noise and distortion ratio (SNDR) is 55.4 dB, the effective number of bits (ENOB) is 8.92 bit, and in the range of -20 to 85 degrees, the detection resolution is 0.2 degree.

Key words: thermopilechopper-stabilizedamplifiermodulator



References:

[1]

Menolfi C, Huang Q. A low-noise CMOS instrumentation amplifier for thermoelectric infrared detectors[J]. IEEE J Solid-State Circuits, 1997, 32(7): 968. doi: 10.1109/4.597287

[2]

Lei Y. Study on low-noise CMOS interface circuit for monolithic MEMS infrared sensor. Master Dissertation, Shanhai, SIMIT, 2007

[3]

Tao Y, Yang H G, Liu K. A low-noise, low-offset chopper amplifier for micro-sensor readout circuit[J]. Chinese Journal of Semiconductors, 2007, 28(5): 796.

[4]

Chen C Y, Hei Y, Hu X Y. A chopper-stabilized operational amplifier for sensor signal detection[J]. Microelectronics, 2012, 42(1): 17.

[5]

Anton B, Kevin T, Johan H. A CMOS nested-chopper instrumentation amplifier with 100-nV offset[J]. IEEE J Solid-State Circuits, 2000, 35(12): 1877. doi: 10.1109/4.890300

[6]

Hanasusanto G A, Zheng Y. A chopper stabilized pre-amplifier for biomedical signal acquisition[J]. IEEE International Symposium on Integrated Circuit, 2007: 200.

[7]

Yves G, Michel S, Willy S. A high-performance multibit Δ σ CMOS ADC[J]. IEEE J Solid-State Circuits, 2000, 35(12): 1829. doi: 10.1109/4.890296

[8]

Matthew M, Craig P. A multibit sigma-delta ADC for multimode receivers[J]. IEEE J Solid-State Circuits, 2003, 38(3): 475. doi: 10.1109/JSSC.2002.808321

[1]

Menolfi C, Huang Q. A low-noise CMOS instrumentation amplifier for thermoelectric infrared detectors[J]. IEEE J Solid-State Circuits, 1997, 32(7): 968. doi: 10.1109/4.597287

[2]

Lei Y. Study on low-noise CMOS interface circuit for monolithic MEMS infrared sensor. Master Dissertation, Shanhai, SIMIT, 2007

[3]

Tao Y, Yang H G, Liu K. A low-noise, low-offset chopper amplifier for micro-sensor readout circuit[J]. Chinese Journal of Semiconductors, 2007, 28(5): 796.

[4]

Chen C Y, Hei Y, Hu X Y. A chopper-stabilized operational amplifier for sensor signal detection[J]. Microelectronics, 2012, 42(1): 17.

[5]

Anton B, Kevin T, Johan H. A CMOS nested-chopper instrumentation amplifier with 100-nV offset[J]. IEEE J Solid-State Circuits, 2000, 35(12): 1877. doi: 10.1109/4.890300

[6]

Hanasusanto G A, Zheng Y. A chopper stabilized pre-amplifier for biomedical signal acquisition[J]. IEEE International Symposium on Integrated Circuit, 2007: 200.

[7]

Yves G, Michel S, Willy S. A high-performance multibit Δ σ CMOS ADC[J]. IEEE J Solid-State Circuits, 2000, 35(12): 1829. doi: 10.1109/4.890296

[8]

Matthew M, Craig P. A multibit sigma-delta ADC for multimode receivers[J]. IEEE J Solid-State Circuits, 2003, 38(3): 475. doi: 10.1109/JSSC.2002.808321

[1]

Min Chen, Yuntao Liu, Jingbo Xiao, Jie Chen. A CMOS detection chip for amperometric sensors with chopper stabilized incremental ΔΣ ADC. J. Semicond., 2016, 37(6): 065004. doi: 10.1088/1674-4926/37/6/065004

[2]

Liu Tong, Liao Xiaoping, Wang Debo. Sensitivity of MEMS microwave power sensor with the length of thermopile based on Fourier equivalent model. J. Semicond., 2011, 32(7): 074009. doi: 10.1088/1674-4926/32/7/074009

[3]

Li Wenyuan, Wang Zhigong. A GaAs PHEMT Laser/Modulator Driver for 24 Gb/s Optical Transmitters. J. Semicond., 2005, 26(12): 2455.

[4]

Gao Tianbao, Wang Jingchao, Zhang Chun, Li Yongming, Wang Zhihua. Design of a Modulator and Demodulator for UHF RFID Readers. J. Semicond., 2008, 29(7): 1403.

[5]

Li Yilei, Han Kefeng, Yan Na, Tan Xi, Min Hao. Analysis and implementation of derivative superposition for a power amplifier driver. J. Semicond., 2012, 33(4): 045002. doi: 10.1088/1674-4926/33/4/045002

[6]

Haijun Wu, Bin Li, Huabin Zhang, Zhengping Li, Longyue Zeng. A single die 1.2 V 55 to 95 dB DR delta sigma ADC with configurable modulator and OSR. J. Semicond., 2014, 35(3): 035003. doi: 10.1088/1674-4926/35/3/035003

[7]

Liu Yan, Zhao Yiqiang, Zhang Shilin, Zhao Hongliang. A low power and low distortion rail-to-rail input/output amplifier using constant current technique. J. Semicond., 2011, 32(4): 045003. doi: 10.1088/1674-4926/32/4/045003

[8]

Xiaoxin Wang, Jifeng Liu. Emerging technologies in Si active photonics. J. Semicond., 2018, 39(6): 061001. doi: 10.1088/1674-4926/39/6/061001

[9]

Lan Dai, Wenkai Liu, Yan Lu. A 410 μW, 70 dB SNR high performance analog front-end for portable audio application. J. Semicond., 2014, 35(10): 105013. doi: 10.1088/1674-4926/35/10/105013

[10]

Chen Dianyu, Xu Changxi, Chen Haoqiong, Li Zhen, Guo Xiuli, Hui Zhiqiang, Shi Peng, Wang Yue, Wu Yue, Xiong Shaozhen. A Novel Digital Transceiver for CT0 Standard. J. Semicond., 2007, 28(6): 833.

[11]

Kun Ren, Jiachen Zheng, Haiyan Lu, Jun Liu, Lishu Wu, Wenyong Zhou, Wei Cheng. An investigation of the DC and RF performance of InP DHBTs transferred to RF CMOS wafer substrate. J. Semicond., 2018, 39(5): 054004. doi: 10.1088/1674-4926/39/5/054004

[12]

Wang Weizhi, Jin Dongming. A Rail-to-Rail Input/Output Amplifier Using Common-GateFrequency Compensation. J. Semicond., 2006, 27(11): 2025.

[13]

Cao Ying, Ren Tenglong, Hong Zhiliang. A 16bit 96kHz Chopper-Stabilized Sigma-Delta ADC. J. Semicond., 2007, 28(8): 1204.

[14]

Li Ran, Li Jing, Yi Ting, Hong Zhiliang. A 18-mW, 20-MHz bandwidth, 12-bit continuous-time ΣΔ modulator using a power-efficient multi-stage amplifier. J. Semicond., 2012, 33(1): 015007. doi: 10.1088/1674-4926/33/1/015007

[15]

Yin Tao, Yang Haigang, Liu Ke. A Low-Noise,Low-Offset Chopper Amplifier for Micro-Sensor Readout Circuit. J. Semicond., 2007, 28(5): 796.

[16]

Zhang Wei, Pan Jiaoqing, Zhu Hongliang, Wang Huan, Wang Wei. High-performance electroabsorption modulator. J. Semicond., 2009, 30(9): 094008. doi: 10.1088/1674-4926/30/9/094008

[17]

Ge Binjie, Wang Xin'an, Zhang Xing, Feng Xiaoxing, Wang Qingqin. Sigma–delta modulator modeling analysis and design. J. Semicond., 2010, 31(9): 095003. doi: 10.1088/1674-4926/31/9/095003

[18]

Liao Zaiyi, Pan Jiaoqing, Zhou Fan, Bian Jing, Zhu Hongliang, Zhao Lingjuan, Wang Wei. A Novel Optical Gate by Integration of a Photodiodeand an Electroabsorption Modulator. J. Semicond., 2008, 29(5): 898.

[19]

Cao Yuxiong, Wu Danyu, Chen Gaopeng, Jin Zhi, Liu Xinyu. Ka-band IQ vector modulator employing GaAs HBTs. J. Semicond., 2011, 32(6): 065005. doi: 10.1088/1674-4926/32/6/065005

[20]

Li Jinfeng, Tang Zhen'an. An A/D interface based on Σ Δ modulator for thermal vacuum sensor ASICs. J. Semicond., 2010, 31(7): 075008. doi: 10.1088/1674-4926/31/7/075008

Search

Advanced Search >>

GET CITATION

C Y Chen, X Y Hu, J Fan, Y Hei. A 55-dB SNDR, 2.2-mW double chopper-stabilized analog front-end for a thermopile sensor[J]. J. Semicond., 2014, 35(5): 055003. doi: 10.1088/1674-4926/35/5/055003.

Export: BibTex EndNote

Article Metrics

Article views: 1288 Times PDF downloads: 14 Times Cited by: 0 Times

History

Manuscript received: 13 December 2013 Manuscript revised: 03 January 2014 Online: Published: 01 May 2014

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误