J. Semicond. > Volume 35 > Issue 6 > Article Number: 064004

Performance enhancement of pentacene-based organic field-effect transistor by inserting a WO3 buffer layer

Jianfeng Fan 1, , Xiaoman Cheng 1, 2, , , Xiao Bai 1, , Lingcheng Zheng 1, , Jing Jiang 1, and Feng Wu 1,

+ Author Affilications + Find other works by these authors

PDF

Abstract: The pentacene-based organic field effect transistor (OFET) with a thin transition metal oxide (WO3) layer between pentacene and metal (Al) source/drain electrodes was fabricated. Compared with conventional OFET with only metal Al source/drain electrodes, the introduction of the WO3 buffer layer leads to the device performance enhancement. The effective field-effect mobility and threshold voltage are improved to 1.90 cm2/(V·s) and 13 V, respectively. The performance improvements are attributed to the decrease of the interface energy barrier and the contact resistance. The results indicate that it is an effective approach to improve the OFET performance by using a WO3 buffer layer.

Key words: organic field effect transistorscontact resistanceWO3 buffer layer

Abstract: The pentacene-based organic field effect transistor (OFET) with a thin transition metal oxide (WO3) layer between pentacene and metal (Al) source/drain electrodes was fabricated. Compared with conventional OFET with only metal Al source/drain electrodes, the introduction of the WO3 buffer layer leads to the device performance enhancement. The effective field-effect mobility and threshold voltage are improved to 1.90 cm2/(V·s) and 13 V, respectively. The performance improvements are attributed to the decrease of the interface energy barrier and the contact resistance. The results indicate that it is an effective approach to improve the OFET performance by using a WO3 buffer layer.

Key words: organic field effect transistorscontact resistanceWO3 buffer layer



References:

[1]

Zhou L, Wanga A, Wu S C. All-organic active matrix flexible display[J]. Appl Phys Lett, 2006, 88(8): 083502. doi: 10.1063/1.2178213

[2]

Taishi T, Zulkarnaen B, Tetsuo T. High current density in light-emitting transistors of organic single crystals[J]. Phys Rev Lett, 2008, 100(6): 066601. doi: 10.1103/PhysRevLett.100.066601

[3]

Sohn C W, Rim T U, Choi G B. Analysis of contact effects in inverted-staggered organic thin-film transistors based on anisotropic conduction[J]. IEEE Trans Electron Devices, 2010, 57(5): 986. doi: 10.1109/TED.2010.2044272

[4]

Zhao G, Cheng X M, Tian H J. Improved performance of pentacene organic field-effect transistors by inserting a V2O5 metal oxide layer[J]. Chin Phys Lett, 2011, 28(12): 127203. doi: 10.1088/0256-307X/28/12/127203

[5]

Necliudov P V N, Shur M S, Gundlach D J. Contact resistance extraction in pentacene thin film transistors[J]. Solid-State Electron, 2003, 47(2): 259. doi: 10.1016/S0038-1101(02)00204-6

[6]

Kymissis I, Dimitrakopoulos C D, Purushothaman S. High-performance bottom electrode organic thin-film transistors[J]. IEEE Trans Electron Devices, 2001, 48(6): 1060. doi: 10.1109/16.925226

[7]

Bock C, Pham D V, Kunze U. Improved morphology and charge carrier injection in pentacene filed-effect transistors with thiol-treated electrodes[J]. J Appl Phys, 2006, 100(11): 114517. doi: 10.1063/1.2400507

[8]

Chih W C, Li S H, Chen C W. High-performance organic thin-film transistors with metal oxide/metal bilayer electrode[J]. Appl Phys Lett, 2005, 87(19): 193508. doi: 10.1063/1.2126140

[9]

Takatsuka1 Y, Kitamura1 S, Akazawa1 T. Preparation and evaluation of phthalocyanine/vanadium oxide field-effect transistors[J]. International Symposium on Electrical Insulating Materials, 2008: 215.

[10]

Darmawan P, Minari T, Kumatani A. Reduction of charge injection barrier by 1-nm contact oxide interlayerin organic field effect transistors[J]. Appl Phys Lett, 2012, 100(1): 013303. doi: 10.1063/1.3673842

[11]

Kröger M, Hamwi S, Meyer J. P-type doping of organic wide band gap materials by transition metal oxides:a case-study on molybdenum trioxide[J]. Org Electron, 2009, 10(5): 932. doi: 10.1016/j.orgel.2009.05.007

[12]

Zhang H M, Choy W C H, Dai Y F. The structural composite effect of Au-WO3-Al interconnecting electrode on performance of each unit in stacked OLEDs[J]. Org Electron, 2009, 10(3): 402. doi: 10.1016/j.orgel.2009.01.001

[13]

Liu Z H, Kobayashi M, Paul B C. Contact engineering for organic semiconductor devices via Fermi level depinning at the metal-organic interface[J]. Phys Rev B, 2010, 82(3): 035311. doi: 10.1103/PhysRevB.82.035311

[14]

Li J, Zhang X W, Zhang L. Improved chromaticity and electron injection in a blue organic light-emitting device by using a dual electron-transport layer with hole-blocking function[J]. Semicond Sci Technol, 2009, 24(7): 115012.

[15]

Wang S D, Miyadera T, Minari T. Contact resistance instability in pentacene thin film transistors induced by ambient gases[J]. Appl Phys Lett, 2008, 93(8): 043311.

[1]

Zhou L, Wanga A, Wu S C. All-organic active matrix flexible display[J]. Appl Phys Lett, 2006, 88(8): 083502. doi: 10.1063/1.2178213

[2]

Taishi T, Zulkarnaen B, Tetsuo T. High current density in light-emitting transistors of organic single crystals[J]. Phys Rev Lett, 2008, 100(6): 066601. doi: 10.1103/PhysRevLett.100.066601

[3]

Sohn C W, Rim T U, Choi G B. Analysis of contact effects in inverted-staggered organic thin-film transistors based on anisotropic conduction[J]. IEEE Trans Electron Devices, 2010, 57(5): 986. doi: 10.1109/TED.2010.2044272

[4]

Zhao G, Cheng X M, Tian H J. Improved performance of pentacene organic field-effect transistors by inserting a V2O5 metal oxide layer[J]. Chin Phys Lett, 2011, 28(12): 127203. doi: 10.1088/0256-307X/28/12/127203

[5]

Necliudov P V N, Shur M S, Gundlach D J. Contact resistance extraction in pentacene thin film transistors[J]. Solid-State Electron, 2003, 47(2): 259. doi: 10.1016/S0038-1101(02)00204-6

[6]

Kymissis I, Dimitrakopoulos C D, Purushothaman S. High-performance bottom electrode organic thin-film transistors[J]. IEEE Trans Electron Devices, 2001, 48(6): 1060. doi: 10.1109/16.925226

[7]

Bock C, Pham D V, Kunze U. Improved morphology and charge carrier injection in pentacene filed-effect transistors with thiol-treated electrodes[J]. J Appl Phys, 2006, 100(11): 114517. doi: 10.1063/1.2400507

[8]

Chih W C, Li S H, Chen C W. High-performance organic thin-film transistors with metal oxide/metal bilayer electrode[J]. Appl Phys Lett, 2005, 87(19): 193508. doi: 10.1063/1.2126140

[9]

Takatsuka1 Y, Kitamura1 S, Akazawa1 T. Preparation and evaluation of phthalocyanine/vanadium oxide field-effect transistors[J]. International Symposium on Electrical Insulating Materials, 2008: 215.

[10]

Darmawan P, Minari T, Kumatani A. Reduction of charge injection barrier by 1-nm contact oxide interlayerin organic field effect transistors[J]. Appl Phys Lett, 2012, 100(1): 013303. doi: 10.1063/1.3673842

[11]

Kröger M, Hamwi S, Meyer J. P-type doping of organic wide band gap materials by transition metal oxides:a case-study on molybdenum trioxide[J]. Org Electron, 2009, 10(5): 932. doi: 10.1016/j.orgel.2009.05.007

[12]

Zhang H M, Choy W C H, Dai Y F. The structural composite effect of Au-WO3-Al interconnecting electrode on performance of each unit in stacked OLEDs[J]. Org Electron, 2009, 10(3): 402. doi: 10.1016/j.orgel.2009.01.001

[13]

Liu Z H, Kobayashi M, Paul B C. Contact engineering for organic semiconductor devices via Fermi level depinning at the metal-organic interface[J]. Phys Rev B, 2010, 82(3): 035311. doi: 10.1103/PhysRevB.82.035311

[14]

Li J, Zhang X W, Zhang L. Improved chromaticity and electron injection in a blue organic light-emitting device by using a dual electron-transport layer with hole-blocking function[J]. Semicond Sci Technol, 2009, 24(7): 115012.

[15]

Wang S D, Miyadera T, Minari T. Contact resistance instability in pentacene thin film transistors induced by ambient gases[J]. Appl Phys Lett, 2008, 93(8): 043311.

[1]

Zheng Hong, Cheng Xiaoman, Tian Haijun, Zhao Geng. Enhanced performance of C60 organic field effect transistors using a tris(8-hydroxyquinoline) aluminum buffer layer. J. Semicond., 2011, 32(9): 094005. doi: 10.1088/1674-4926/32/9/094005

[2]

Mingdong Yi, Ning Zhang, Linghai Xie, Wei Huang. Ambipolar organic heterojunction transistors based on F16CuPc/CuPc with a MoO3 buffer layer. J. Semicond., 2015, 36(10): 104001. doi: 10.1088/1674-4926/36/10/104001

[3]

N Divya Bharathi, K Sivasankaran. Research progress and challenges of two dimensional MoS2 field effect transistors. J. Semicond., 2018, 39(10): 104002. doi: 10.1088/1674-4926/39/10/104002

[4]

Liu Chunjuan, Liu Su, Feng Jingjing, Wu Rong. Nickel ohmic contacts of high-concentration P-implanted 4H-SiC. J. Semicond., 2012, 33(3): 036002. doi: 10.1088/1674-4926/33/3/036002

[5]

Yi Xiaoyan, Ma Long, Guo Jinxia, Wang Liangchen, Li Jinmin. Investigation of p-Electrode in High Power GaN-LED Application. J. Semicond., 2005, 26(S1): 161.

[6]

Chen Jinhuo, Hu Jiaxing, Zhu Yunlong. A novel method to analyze the contact resistance effect on OTFTs. J. Semicond., 2012, 33(12): 124005. doi: 10.1088/1674-4926/33/12/124005

[7]

Liu Ge, Liu Ming, Shang Liwei, Tu Deyu, Liu Xinghua, Wang Hong, Liu Jiang. Active layer self-protection process for organic field-effect transistors. J. Semicond., 2009, 30(9): 094006. doi: 10.1088/1674-4926/30/9/094006

[8]

Xiaoyu Liang, Xiaoman Cheng, Boqun Du, Xiao Bai, Jianfeng Fan. Enhanced performance of C60 N-type organic field-effect transistors using a pentacene passivation layer. J. Semicond., 2013, 34(8): 084002. doi: 10.1088/1674-4926/34/8/084002

[9]

Jingtao Zhao, Zhaojun Lin, Chongbiao Luan, Ming Yang, Yang Zhou, Yuanjie Lü, Zhihong Feng. Effect of the side-Ohmic contact processing on the polarization Coulomb field scattering in AlN/GaN heterostructure field-effect transistors. J. Semicond., 2014, 35(12): 124003. doi: 10.1088/1674-4926/35/12/124003

[10]

Poornima Mittal, Y.S. Negi, R.K. Singh. Impact of source and drain contact thickness on the performance of organic thin film transistors. J. Semicond., 2014, 35(12): 124002. doi: 10.1088/1674-4926/35/12/124002

[11]

Zhao Hongwang, Hua Zhongqiu, Li Tongye, Wang Yu, Zhao Yong. Origin of varistor properties of tungsten trioxide (WO3) ceramics. J. Semicond., 2010, 31(2): 023001. doi: 10.1088/1674-4926/31/2/023001

[12]

Zhang Xianjun, Yang Yintang, Chai Changchun, Duan Baoxing, Song Kun, Chen Bin. Effect of a gate buffer layer on the performance of a 4H-SiC Schottky barrier field-effect transistor. J. Semicond., 2012, 33(7): 074003. doi: 10.1088/1674-4926/33/7/074003

[13]

Huihui Zhuang, Jinliang Yan, Chengyang Xu, Delan Meng. Effect of Ga2O3 buffer layer thickness on the properties of Cu/ITO thin films deposited on flexible substrates. J. Semicond., 2014, 35(5): 053001. doi: 10.1088/1674-4926/35/5/053001

[14]

Yuxiang Qin, Deyan Hua, Xiao Li. First principles study on the surface-and orientation-dependent electronic structure of a WO3 nanowire. J. Semicond., 2013, 34(6): 062002. doi: 10.1088/1674-4926/34/6/062002

[15]

I. Murtaza, Kh S. Karimov, Zubair Ahmad, I. Qazi, M. Mahroof-Tahir, T. A. Khan, T. Amin. Humidity sensitive organic field effect transistor. J. Semicond., 2010, 31(5): 054001. doi: 10.1088/1674-4926/31/5/054001

[16]

Yong Wang, Dandan Liu, Guoqing Feng, Zhen Ye, Zhanqi Gao, Xiaohua Wang. Effect of Pt diffusion barrier layer in Ni/AuGe/Pt/Au on ohmic contact to n-GaAs. J. Semicond., 2015, 36(3): 036002. doi: 10.1088/1674-4926/36/3/036002

[17]

Jincheng Zhang, Chengwu Shi, Junjun Chen, Chao Ying, Ni Wu, Mao Wang. Pyrolysis preparation of WO3 thin films using ammonium metatungstate DMF/water solution for efficient compact layers in planar perovskite solar cells. J. Semicond., 2016, 37(3): 033002. doi: 10.1088/1674-4926/37/3/033002

[18]

K. Chakraborty, S. Chakraborty, N. B. Manik. Effect of single walled carbon nanotubes on series resistance of Rose Bengal and Methyl Red dye-based organic photovoltaic device. J. Semicond., 2018, 39(9): 094001. doi: 10.1088/1674-4926/39/9/094001

[19]

Zhang Lucheng, Shen Hui. Novel approach for characterizing the specific shunt resistance caused by the penetration of the front contact through the p–n junction in solar cell. J. Semicond., 2009, 30(7): 074007. doi: 10.1088/1674-4926/30/7/074007

[20]

Yang Wei, Liu Xunchun, Zhu Min, Wang Runmei, Shen Huajun. Alloy Temperature Dependence of Offset Voltage and Ohmic Contact Resistance in Thin Base InGaP/GaAs HBTs. J. Semicond., 2006, 27(5): 765.

Search

Advanced Search >>

GET CITATION

J F Fan, X M Cheng, X Bai, L C Zheng, J Jiang, F Wu. Performance enhancement of pentacene-based organic field-effect transistor by inserting a WO3 buffer layer[J]. J. Semicond., 2014, 35(6): 064004. doi: 10.1088/1674-4926/35/6/064004.

Export: BibTex EndNote

Article Metrics

Article views: 606 Times PDF downloads: 6 Times Cited by: 0 Times

History

Manuscript received: 04 November 2013 Manuscript revised: 31 December 2013 Online: Published: 01 June 2014

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误