J. Semicond. > Volume 35 > Issue 6 > Article Number: 064004

Performance enhancement of pentacene-based organic field-effect transistor by inserting a WO3 buffer layer

Jianfeng Fan 1, , Xiaoman Cheng 1, 2, , , Xiao Bai 1, , Lingcheng Zheng 1, , Jing Jiang 1, and Feng Wu 1,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: The pentacene-based organic field effect transistor (OFET) with a thin transition metal oxide (WO3) layer between pentacene and metal (Al) source/drain electrodes was fabricated. Compared with conventional OFET with only metal Al source/drain electrodes, the introduction of the WO3 buffer layer leads to the device performance enhancement. The effective field-effect mobility and threshold voltage are improved to 1.90 cm2/(V·s) and 13 V, respectively. The performance improvements are attributed to the decrease of the interface energy barrier and the contact resistance. The results indicate that it is an effective approach to improve the OFET performance by using a WO3 buffer layer.

Key words: organic field effect transistorscontact resistanceWO3 buffer layer

Abstract: The pentacene-based organic field effect transistor (OFET) with a thin transition metal oxide (WO3) layer between pentacene and metal (Al) source/drain electrodes was fabricated. Compared with conventional OFET with only metal Al source/drain electrodes, the introduction of the WO3 buffer layer leads to the device performance enhancement. The effective field-effect mobility and threshold voltage are improved to 1.90 cm2/(V·s) and 13 V, respectively. The performance improvements are attributed to the decrease of the interface energy barrier and the contact resistance. The results indicate that it is an effective approach to improve the OFET performance by using a WO3 buffer layer.

Key words: organic field effect transistorscontact resistanceWO3 buffer layer



References:

[1]

Zhou L, Wanga A, Wu S C. All-organic active matrix flexible display[J]. Appl Phys Lett, 2006, 88(8): 083502. doi: 10.1063/1.2178213

[2]

Taishi T, Zulkarnaen B, Tetsuo T. High current density in light-emitting transistors of organic single crystals[J]. Phys Rev Lett, 2008, 100(6): 066601. doi: 10.1103/PhysRevLett.100.066601

[3]

Sohn C W, Rim T U, Choi G B. Analysis of contact effects in inverted-staggered organic thin-film transistors based on anisotropic conduction[J]. IEEE Trans Electron Devices, 2010, 57(5): 986. doi: 10.1109/TED.2010.2044272

[4]

Zhao G, Cheng X M, Tian H J. Improved performance of pentacene organic field-effect transistors by inserting a V2O5 metal oxide layer[J]. Chin Phys Lett, 2011, 28(12): 127203. doi: 10.1088/0256-307X/28/12/127203

[5]

Necliudov P V N, Shur M S, Gundlach D J. Contact resistance extraction in pentacene thin film transistors[J]. Solid-State Electron, 2003, 47(2): 259. doi: 10.1016/S0038-1101(02)00204-6

[6]

Kymissis I, Dimitrakopoulos C D, Purushothaman S. High-performance bottom electrode organic thin-film transistors[J]. IEEE Trans Electron Devices, 2001, 48(6): 1060. doi: 10.1109/16.925226

[7]

Bock C, Pham D V, Kunze U. Improved morphology and charge carrier injection in pentacene filed-effect transistors with thiol-treated electrodes[J]. J Appl Phys, 2006, 100(11): 114517. doi: 10.1063/1.2400507

[8]

Chih W C, Li S H, Chen C W. High-performance organic thin-film transistors with metal oxide/metal bilayer electrode[J]. Appl Phys Lett, 2005, 87(19): 193508. doi: 10.1063/1.2126140

[9]

Takatsuka1 Y, Kitamura1 S, Akazawa1 T. Preparation and evaluation of phthalocyanine/vanadium oxide field-effect transistors[J]. International Symposium on Electrical Insulating Materials, 2008: 215.

[10]

Darmawan P, Minari T, Kumatani A. Reduction of charge injection barrier by 1-nm contact oxide interlayerin organic field effect transistors[J]. Appl Phys Lett, 2012, 100(1): 013303. doi: 10.1063/1.3673842

[11]

Kröger M, Hamwi S, Meyer J. P-type doping of organic wide band gap materials by transition metal oxides:a case-study on molybdenum trioxide[J]. Org Electron, 2009, 10(5): 932. doi: 10.1016/j.orgel.2009.05.007

[12]

Zhang H M, Choy W C H, Dai Y F. The structural composite effect of Au-WO3-Al interconnecting electrode on performance of each unit in stacked OLEDs[J]. Org Electron, 2009, 10(3): 402. doi: 10.1016/j.orgel.2009.01.001

[13]

Liu Z H, Kobayashi M, Paul B C. Contact engineering for organic semiconductor devices via Fermi level depinning at the metal-organic interface[J]. Phys Rev B, 2010, 82(3): 035311. doi: 10.1103/PhysRevB.82.035311

[14]

Li J, Zhang X W, Zhang L. Improved chromaticity and electron injection in a blue organic light-emitting device by using a dual electron-transport layer with hole-blocking function[J]. Semicond Sci Technol, 2009, 24(7): 115012.

[15]

Wang S D, Miyadera T, Minari T. Contact resistance instability in pentacene thin film transistors induced by ambient gases[J]. Appl Phys Lett, 2008, 93(8): 043311.

[1]

Zhou L, Wanga A, Wu S C. All-organic active matrix flexible display[J]. Appl Phys Lett, 2006, 88(8): 083502. doi: 10.1063/1.2178213

[2]

Taishi T, Zulkarnaen B, Tetsuo T. High current density in light-emitting transistors of organic single crystals[J]. Phys Rev Lett, 2008, 100(6): 066601. doi: 10.1103/PhysRevLett.100.066601

[3]

Sohn C W, Rim T U, Choi G B. Analysis of contact effects in inverted-staggered organic thin-film transistors based on anisotropic conduction[J]. IEEE Trans Electron Devices, 2010, 57(5): 986. doi: 10.1109/TED.2010.2044272

[4]

Zhao G, Cheng X M, Tian H J. Improved performance of pentacene organic field-effect transistors by inserting a V2O5 metal oxide layer[J]. Chin Phys Lett, 2011, 28(12): 127203. doi: 10.1088/0256-307X/28/12/127203

[5]

Necliudov P V N, Shur M S, Gundlach D J. Contact resistance extraction in pentacene thin film transistors[J]. Solid-State Electron, 2003, 47(2): 259. doi: 10.1016/S0038-1101(02)00204-6

[6]

Kymissis I, Dimitrakopoulos C D, Purushothaman S. High-performance bottom electrode organic thin-film transistors[J]. IEEE Trans Electron Devices, 2001, 48(6): 1060. doi: 10.1109/16.925226

[7]

Bock C, Pham D V, Kunze U. Improved morphology and charge carrier injection in pentacene filed-effect transistors with thiol-treated electrodes[J]. J Appl Phys, 2006, 100(11): 114517. doi: 10.1063/1.2400507

[8]

Chih W C, Li S H, Chen C W. High-performance organic thin-film transistors with metal oxide/metal bilayer electrode[J]. Appl Phys Lett, 2005, 87(19): 193508. doi: 10.1063/1.2126140

[9]

Takatsuka1 Y, Kitamura1 S, Akazawa1 T. Preparation and evaluation of phthalocyanine/vanadium oxide field-effect transistors[J]. International Symposium on Electrical Insulating Materials, 2008: 215.

[10]

Darmawan P, Minari T, Kumatani A. Reduction of charge injection barrier by 1-nm contact oxide interlayerin organic field effect transistors[J]. Appl Phys Lett, 2012, 100(1): 013303. doi: 10.1063/1.3673842

[11]

Kröger M, Hamwi S, Meyer J. P-type doping of organic wide band gap materials by transition metal oxides:a case-study on molybdenum trioxide[J]. Org Electron, 2009, 10(5): 932. doi: 10.1016/j.orgel.2009.05.007

[12]

Zhang H M, Choy W C H, Dai Y F. The structural composite effect of Au-WO3-Al interconnecting electrode on performance of each unit in stacked OLEDs[J]. Org Electron, 2009, 10(3): 402. doi: 10.1016/j.orgel.2009.01.001

[13]

Liu Z H, Kobayashi M, Paul B C. Contact engineering for organic semiconductor devices via Fermi level depinning at the metal-organic interface[J]. Phys Rev B, 2010, 82(3): 035311. doi: 10.1103/PhysRevB.82.035311

[14]

Li J, Zhang X W, Zhang L. Improved chromaticity and electron injection in a blue organic light-emitting device by using a dual electron-transport layer with hole-blocking function[J]. Semicond Sci Technol, 2009, 24(7): 115012.

[15]

Wang S D, Miyadera T, Minari T. Contact resistance instability in pentacene thin film transistors induced by ambient gases[J]. Appl Phys Lett, 2008, 93(8): 043311.

Search

Advanced Search >>

GET CITATION

J F Fan, X M Cheng, X Bai, L C Zheng, J Jiang, F Wu. Performance enhancement of pentacene-based organic field-effect transistor by inserting a WO3 buffer layer[J]. J. Semicond., 2014, 35(6): 064004. doi: 10.1088/1674-4926/35/6/064004.

Export: BibTex EndNote

Article Metrics

Article views: 1474 Times PDF downloads: 7 Times Cited by: 0 Times

History

Manuscript received: 04 November 2013 Manuscript revised: 31 December 2013 Online: Published: 01 June 2014

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误