J. Semicond. > Volume 35 > Issue 6 > Article Number: 064005

Toluene-sensing properties of In2O3 nanotubes synthesized by electrospinning

Xiao Chi 1, , Changbai Liu 2, , Jinbao Zhang 1, , Li Liu 1, , , Haiying Li 1, , Yue He 1, , Xiaoqing Bo 1, and Lili Liu 1,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: The pristine In2O3 nanotubes were synthesized by electrospinning and subsequent calcination. Scanning electron microscope, X-ray powder diffraction and transmission electron micrograph were employed to analyze the morphology and crystal structure of the as-synthesized nanotubes. Gas-sensing properties of the as-synthesized In2O3 nanotubes were investigated by exposing the corresponding sensors to toluene, acetone, ethanol, formaldehyde, ammonia and carbon monoxide at 340℃. The results show that the gas sensor possesses a good selectivity to toluene at 340℃. The response of the In2O3 nanotube gas sensor to 40 ppm is about 5.88. The response and recovery times are about 3 s and 17 s, respectively.

Key words: In2O3nanotubetoluenegas sensor

Abstract: The pristine In2O3 nanotubes were synthesized by electrospinning and subsequent calcination. Scanning electron microscope, X-ray powder diffraction and transmission electron micrograph were employed to analyze the morphology and crystal structure of the as-synthesized nanotubes. Gas-sensing properties of the as-synthesized In2O3 nanotubes were investigated by exposing the corresponding sensors to toluene, acetone, ethanol, formaldehyde, ammonia and carbon monoxide at 340℃. The results show that the gas sensor possesses a good selectivity to toluene at 340℃. The response of the In2O3 nanotube gas sensor to 40 ppm is about 5.88. The response and recovery times are about 3 s and 17 s, respectively.

Key words: In2O3nanotubetoluenegas sensor



References:

[1]

Pramod N G, Pandey S N, Sahay P P. Structural, optical and methanol sensing properties of sprayed In2O3 nanoparticle thin films[J]. Ceramics International, 2012, 38: 4151. doi: 10.1016/j.ceramint.2012.01.075

[2]

Zhao Wenjie, Shi Yunbo, Xiu Debin. Sensitive properties of In-based compound semiconductor oxide to Cl2 gas[J]. Journal of Semiconductors, 2009, 30(3): 034010. doi: 10.1088/1674-4926/30/3/034010

[3]

Sun Peng, Hu Ming, Li Mingda. Nano-WO3 film modified macro-porous silicon (MPS) gas sensor[J]. Journal of Semiconductors, 2012, 33(5): 054012. doi: 10.1088/1674-4926/33/5/054012

[4]

Shim H S, Kim J W, Sung Y E. Electrochromic properties of tungsten oxide nanowires fabricated by electrospinning method[J]. Solar Energy Materials and Solar Cells, 2009, 93: 2062. doi: 10.1016/j.solmat.2009.02.008

[5]

Greiner A, Wendorff J H. Electrospinning:a fascinating method for the preparation of ultrathin fibers[J]. Angewandte Chemie International Edition, 2007, 46: 5670. doi: 10.1002/(ISSN)1521-3773

[6]

Zhang Z, Li X, Wang C. ZnO hollow nanofibers:fabrication from facile single capillary electrospinning and applications in gas sensors[J]. J Phys Chem C, 2009, 113: 19397. doi: 10.1021/jp9070373

[7]

Cho S, Kim D H, Lee B S. Ethanol sensors based on ZnO nanotubes with controllable wall thickness via atomic layer deposition, an O2 plasma process and an annealing process[J]. Sensors and Actuators B:Chemical, 2012, 162: 300. doi: 10.1016/j.snb.2011.12.081

[8]

Qiu Y, Yu J. Synthesis of titanium dioxide nanotubes from electrospun fiber templates[J]. Solid State Commun, 2008, 148: 556. doi: 10.1016/j.ssc.2008.09.047

[9]

Qi Q, Zhang T, Liu L. Improved NH3, C2H5OH, and CH3COCH3 sensing properties of SnO2 nanofibers by adding block copolymer P123[J]. Sensors and Actuators B:Chemical, 2009, 141: 174. doi: 10.1016/j.snb.2009.05.039

[10]

Wagner T, Kohl C D, Morandi S. Photoreduction of mesoporous In2O3:mechanistic model and utility in gas sensing[J]. Chemistry-A European Journal, 2012, 18: 8216. doi: 10.1002/chem.v18.26

[11]

Kim S J, Hwang I S, Choi J K. Enhanced C2H5OH sensing characteristics of nano-porous In2O3 hollow spheres prepared by sucrose-mediated hydrothermal reaction[J]. Sensors and Actuators B:Chemical, 2011, 155: 512. doi: 10.1016/j.snb.2010.12.055

[12]

Guo L, Shen X, Zhu G. Preparation and gas-sensing performance of In2O3 porous nanoplatelets[J]. Sensors and Actuators B:Chemical, 2011, 155: 752. doi: 10.1016/j.snb.2011.01.042

[13]

Lin C W, Chen H I, Chen T Y. On an indium-tin-oxide thin film based ammonia gas sensor[J]. Sensors and Actuators B:Chemical, 2011, 160: 1481. doi: 10.1016/j.snb.2011.07.041

[14]

Song P, Wang Q, Yang Z. Biomorphic synthesis and gas response of In2O3 microtubules using cotton fibers as templates[J]. Sensors and Actuators B:Chemical, 2012, 168: 421. doi: 10.1016/j.snb.2012.04.054

[15]

Donato N, Neri F, Neri G. CO sensing devices based on indium oxide nanoparticles prepared by laser ablation in water[J]. Thin Solid Films, 2011, 520: 922. doi: 10.1016/j.tsf.2011.04.182

[16]

Zhang Y, He X, Li J. Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers[J]. Sensors and Actuators B:Chemical, 2008, 132: 67. doi: 10.1016/j.snb.2008.01.006

[17]

Cheng Zhiming, Zhou Sumei, Chen Tongyun. Acetic acid gas sensors based on Ni2+ doped ZnO nanorods prepared by using the solvothermal method[J]. Journal of Semiconductors, 2012, 33(11): 112003. doi: 10.1088/1674-4926/33/11/112003

[18]

Liu L L, Gong N M, Wei W W. Development of superfine oxidized indium powder[J]. Chinese Journal of Nonferrous Metallurgy, 1999, 28(6): 32.

[19]

Zhang F, Wang X, Dong J. Selective BTEX sensor based on a SnO2/V2O5 composite[J]. Sensors and Actuators B:Chemical, 2013, 186: 126. doi: 10.1016/j.snb.2013.05.086

[20]

Song X, Zhang D, Fan M. A novel toluene sensor based on ZnO-SnO2 nanofiber web[J]. Appl Surf Sci, 2009, 255: 7343. doi: 10.1016/j.apsusc.2009.02.094

[21]

Navale S T, Bandgar D K, Nalage S R. Synthesis of Fe2O3 nanoparticles for nitrogen dioxide gas sensing applications[J]. Ceramics International, 2013, 39: 6453. doi: 10.1016/j.ceramint.2013.01.074

[1]

Pramod N G, Pandey S N, Sahay P P. Structural, optical and methanol sensing properties of sprayed In2O3 nanoparticle thin films[J]. Ceramics International, 2012, 38: 4151. doi: 10.1016/j.ceramint.2012.01.075

[2]

Zhao Wenjie, Shi Yunbo, Xiu Debin. Sensitive properties of In-based compound semiconductor oxide to Cl2 gas[J]. Journal of Semiconductors, 2009, 30(3): 034010. doi: 10.1088/1674-4926/30/3/034010

[3]

Sun Peng, Hu Ming, Li Mingda. Nano-WO3 film modified macro-porous silicon (MPS) gas sensor[J]. Journal of Semiconductors, 2012, 33(5): 054012. doi: 10.1088/1674-4926/33/5/054012

[4]

Shim H S, Kim J W, Sung Y E. Electrochromic properties of tungsten oxide nanowires fabricated by electrospinning method[J]. Solar Energy Materials and Solar Cells, 2009, 93: 2062. doi: 10.1016/j.solmat.2009.02.008

[5]

Greiner A, Wendorff J H. Electrospinning:a fascinating method for the preparation of ultrathin fibers[J]. Angewandte Chemie International Edition, 2007, 46: 5670. doi: 10.1002/(ISSN)1521-3773

[6]

Zhang Z, Li X, Wang C. ZnO hollow nanofibers:fabrication from facile single capillary electrospinning and applications in gas sensors[J]. J Phys Chem C, 2009, 113: 19397. doi: 10.1021/jp9070373

[7]

Cho S, Kim D H, Lee B S. Ethanol sensors based on ZnO nanotubes with controllable wall thickness via atomic layer deposition, an O2 plasma process and an annealing process[J]. Sensors and Actuators B:Chemical, 2012, 162: 300. doi: 10.1016/j.snb.2011.12.081

[8]

Qiu Y, Yu J. Synthesis of titanium dioxide nanotubes from electrospun fiber templates[J]. Solid State Commun, 2008, 148: 556. doi: 10.1016/j.ssc.2008.09.047

[9]

Qi Q, Zhang T, Liu L. Improved NH3, C2H5OH, and CH3COCH3 sensing properties of SnO2 nanofibers by adding block copolymer P123[J]. Sensors and Actuators B:Chemical, 2009, 141: 174. doi: 10.1016/j.snb.2009.05.039

[10]

Wagner T, Kohl C D, Morandi S. Photoreduction of mesoporous In2O3:mechanistic model and utility in gas sensing[J]. Chemistry-A European Journal, 2012, 18: 8216. doi: 10.1002/chem.v18.26

[11]

Kim S J, Hwang I S, Choi J K. Enhanced C2H5OH sensing characteristics of nano-porous In2O3 hollow spheres prepared by sucrose-mediated hydrothermal reaction[J]. Sensors and Actuators B:Chemical, 2011, 155: 512. doi: 10.1016/j.snb.2010.12.055

[12]

Guo L, Shen X, Zhu G. Preparation and gas-sensing performance of In2O3 porous nanoplatelets[J]. Sensors and Actuators B:Chemical, 2011, 155: 752. doi: 10.1016/j.snb.2011.01.042

[13]

Lin C W, Chen H I, Chen T Y. On an indium-tin-oxide thin film based ammonia gas sensor[J]. Sensors and Actuators B:Chemical, 2011, 160: 1481. doi: 10.1016/j.snb.2011.07.041

[14]

Song P, Wang Q, Yang Z. Biomorphic synthesis and gas response of In2O3 microtubules using cotton fibers as templates[J]. Sensors and Actuators B:Chemical, 2012, 168: 421. doi: 10.1016/j.snb.2012.04.054

[15]

Donato N, Neri F, Neri G. CO sensing devices based on indium oxide nanoparticles prepared by laser ablation in water[J]. Thin Solid Films, 2011, 520: 922. doi: 10.1016/j.tsf.2011.04.182

[16]

Zhang Y, He X, Li J. Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers[J]. Sensors and Actuators B:Chemical, 2008, 132: 67. doi: 10.1016/j.snb.2008.01.006

[17]

Cheng Zhiming, Zhou Sumei, Chen Tongyun. Acetic acid gas sensors based on Ni2+ doped ZnO nanorods prepared by using the solvothermal method[J]. Journal of Semiconductors, 2012, 33(11): 112003. doi: 10.1088/1674-4926/33/11/112003

[18]

Liu L L, Gong N M, Wei W W. Development of superfine oxidized indium powder[J]. Chinese Journal of Nonferrous Metallurgy, 1999, 28(6): 32.

[19]

Zhang F, Wang X, Dong J. Selective BTEX sensor based on a SnO2/V2O5 composite[J]. Sensors and Actuators B:Chemical, 2013, 186: 126. doi: 10.1016/j.snb.2013.05.086

[20]

Song X, Zhang D, Fan M. A novel toluene sensor based on ZnO-SnO2 nanofiber web[J]. Appl Surf Sci, 2009, 255: 7343. doi: 10.1016/j.apsusc.2009.02.094

[21]

Navale S T, Bandgar D K, Nalage S R. Synthesis of Fe2O3 nanoparticles for nitrogen dioxide gas sensing applications[J]. Ceramics International, 2013, 39: 6453. doi: 10.1016/j.ceramint.2013.01.074

[1]

Li Liu, Shouchun Li, Xin Guo, Yue He, Lianyuan Wang. Excellent performance of gas sensor based on In2O3-Fe2O3 nanotubes. J. Semicond., 2016, 37(1): 013005. doi: 10.1088/1674-4926/37/1/013005

[2]

Zhao Wenjie, Shi Yunbo, Xiu Debin, Lei Tingping, Feng Qiaohua, Wang Liquan. Sensitive properties of In-based compound semiconductor oxide to Cl2 gas. J. Semicond., 2009, 30(3): 034010. doi: 10.1088/1674-4926/30/3/034010

[3]

Liu Li, Zhang Tong, Qi Qi, Chen Weiyou, Xu Baokun. Study of Micro-Structure Ethanol Gas Sensor Based on La0.7Sr0.3FeO3. J. Semicond., 2007, 28(4): 610.

[4]

Xie Zili, Zhang Rong, Gao Chao, Liu Bin, Li Liang, Xiu Xiangqian, Zhu Shunming, Gu Shulin, Han Ping, Jiang Ruolian, Shi Yi, Zheng Youdou. Fabrication and Characteristics of In2O3 Nanowires. J. Semicond., 2006, 27(3): 536.

[5]

Fan Huitao, Zhang Tong, Qi Qi, Liu Li. Preparation and C2H2 Sensing Characteristics of Sm2O3-Doped SnO2 Gas Sensors. J. Semicond., 2008, 29(2): 319.

[6]

Songyang Yuan, Shaolin Zhang. Recent progress on gas sensors based on graphene-like 2D/2D nanocomposites. J. Semicond., 2019, 40(11): 111608. doi: 10.1088/1674-4926/40/11/111608

[7]

Cheng Zhiming, Zhou Sumei, Chen Tongyun, Dong Yongping, Zhang Wangbing, Chu Xiangfeng. Acetic acid gas sensors based on Ni2+ doped ZnO nanorods prepared by using the solvothermal method. J. Semicond., 2012, 33(11): 112003. doi: 10.1088/1674-4926/33/11/112003

[8]

Ding Ruixue, Yang Yintang, Liu Lianxi. Working mechanism of a SiC nanotube NO2 gas sensor. J. Semicond., 2009, 30(11): 114010. doi: 10.1088/1674-4926/30/11/114010

[9]

Ying He, Deyin Wang, Li Liu. SnO2-doped α-Fe2O3 patulous microtubes for high performance formaldehyde sensing. J. Semicond., 2015, 36(8): 083005. doi: 10.1088/1674-4926/36/8/083005

[10]

Qi Lei, Hairong Li, Huan Zhang, Jianan Wang, Wenhao Fan, Lina Cai. Three-dimensional hierarchical CuO gas sensor modified by Au nanoparticles. J. Semicond., 2019, 40(2): 022101. doi: 10.1088/1674-4926/40/2/022101

[11]

Bin Niu, Hongyan Yu, Liqiang Yu, Daibing Zhou, Dan Lu, Lingjuan Zhao, Jiaoqing Pan, Wei Wang. A 1.65 μm three-section distributed Bragg reflector (DBR) laser for CH4 gas sensors. J. Semicond., 2013, 34(10): 104004. doi: 10.1088/1674-4926/34/10/104004

[12]

Qi Yan, Liang Gao, Jiang Tang, Huan Liu. Flexible and stretchable photodetectors and gas sensors for wearable healthcare based on solution-processable metal chalcogenides. J. Semicond., 2019, 40(11): 111604. doi: 10.1088/1674-4926/40/11/111604

[13]

Gao Chaoqun, Jiao Binbin, Liu Maozhe, Li Quanbao, Yang Kai, Shi Shali, Li Zhigang, Ou Yi, Jing Yupeng, Chen Dapeng. MEMS/CMOS Compatible Gas Sensors Based on Spectroscopy Analysis. J. Semicond., 2008, 29(10): 2043.

[14]

Liu Li, Feng Yingliang, Yu Lianxiang, Wang Lianyuan, Zhang Tong. Preparation and Acetone Sensing Properties of Flower-Like ZnO Nanorods. J. Semicond., 2008, 29(12): 2372.

[15]

Liu Li, Wang Lianyuan, Han Yu, Li Shouchun, Shan Hao, Wu Peilin, Meng Xin, Wei Aiguo, Li Wei. Highly sensitive and selective ethanol sensors based on flower-like ZnO nanorods. J. Semicond., 2011, 32(9): 092005. doi: 10.1088/1674-4926/32/9/092005

[16]

Liu Xiaowei, Zhao Zhengang, Li Tuo, Wang Xin. Novel capacitance-type humidity sensor based on multi-wall carbon nanotube/SiO2 composite films. J. Semicond., 2011, 32(3): 034006. doi: 10.1088/1674-4926/32/3/034006

[17]

Lin Wei, Huang Shizhen, Chen Wenzhe. An MWCNT-doped SnO2 thin film NO2 gas sensor by RF reactive magnetron sputtering. J. Semicond., 2010, 31(2): 024006. doi: 10.1088/1674-4926/31/2/024006

[18]

Sun Peng, Hu Ming, Li Mingda, Ma Shuangyun. Nano-WO3 film modified macro-porous silicon (MPS) gas sensor. J. Semicond., 2012, 33(5): 054012. doi: 10.1088/1674-4926/33/5/054012

[19]

Jian Liu, Shihua Huang, Lü He. Metal-catalyzed growth of In2O3 nanotowers using thermal evaporation and oxidation method. J. Semicond., 2015, 36(12): 123007. doi: 10.1088/1674-4926/36/12/123007

[20]

Han Weiqing, Zhou Gang, Wang Lianjun, Sun Xiuyun, Li Jiansheng. Fabrication of Tin Oxide Porous Nanostructures on Titanium by Anodization and Electroplating. J. Semicond., 2006, 27(12): 2134.

Search

Advanced Search >>

GET CITATION

X Chi, C B Liu, J B Zhang, L Liu, H Y Li, Y He, X Q Bo, L L Liu. Toluene-sensing properties of In2O3 nanotubes synthesized by electrospinning[J]. J. Semicond., 2014, 35(6): 064005. doi: 10.1088/1674-4926/35/6/064005.

Export: BibTex EndNote

Article Metrics

Article views: 1207 Times PDF downloads: 8 Times Cited by: 0 Times

History

Manuscript received: 02 July 2013 Manuscript revised: 13 January 2014 Online: Published: 01 June 2014

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误