J. Semicond. > Volume 35 > Issue 9 > Article Number: 095010

A novel trajectory prediction control for proximate time-optimal digital control DC-DC converters

Qing Wang , Ning Chen , Shen Xu , Weifeng Sun , and Longxing Shi

+ Author Affiliations + Find other works by these authors

PDF

Abstract: The purpose of this paper is to present a novel trajectory prediction method for proximate time-optimal digital control DC-DC converters. The control method provides pre-estimations of the duty ratio in the next several switching cycles, so as to compensate the computational time delay of the control loop and increase the control loop bandwidth, thereby improving the response speed. The experiment results show that the fastest transient response time of the digital DC-DC with the proposed prediction is about 8 μs when the load current changes from 0.6 to 0.1 A.

Key words: transient responsedigital controlDC-DC converterspredictiontime delay

Abstract: The purpose of this paper is to present a novel trajectory prediction method for proximate time-optimal digital control DC-DC converters. The control method provides pre-estimations of the duty ratio in the next several switching cycles, so as to compensate the computational time delay of the control loop and increase the control loop bandwidth, thereby improving the response speed. The experiment results show that the fastest transient response time of the digital DC-DC with the proposed prediction is about 8 μs when the load current changes from 0.6 to 0.1 A.

Key words: transient responsedigital controlDC-DC converterspredictiontime delay



References:

[1]

Yan W, Li W H, Liu R. A noise-shaped buck DC-DC converter with improved light-load efficiency and fast transient response[J]. IEEE Trans Power Electron, 2011, 26(12): 3908. doi: 10.1109/TPEL.2011.2136361

[2]

Tsai J C, Chen C L, Lee Y H. Modified hysteretic current control (MHCC) for improving transient response of boost converter[J]. IEEE Trans Circuits Syst Ⅰ:Regular Papers, 2011, 58(8): 1967. doi: 10.1109/TCSI.2011.2106231

[3]

Meyer E, Zhang Z L, Liu Y F. Controlled auxiliary circuit to improve the unloading transient response of buck converters[J]. IEEE Trans Power Electron, 2010, 25(4): 806. doi: 10.1109/TPEL.2009.2032362

[4]

Smedley K M, Cuk S. One cycle control of switching converters[J]. IEEE Trans Power Electron, 1995, 10(6): 625. doi: 10.1109/63.471281

[5]

Bibian S, Jin H. Time delay compensation of digital control for DC switch mode power supplies using prediction techniques[J]. IEEE Trans Power Electron, 2000, 15(5): 835. doi: 10.1109/63.867672

[6]

Lee A T L, Chan P C H. Adaptive prediction in digitally controlled buck converter with fast load transient response. Proc 13th IEEE Control and Modeling for Power Electronics, Kyoto, Japan, 2012

[7]

Leung K K S, Chung H S H. State trajectory prediction control for boost converters. Proc 2004 Circuits and Systems, Vancouver, Canada, 2004: V-556

[8]

Nasab T M M. Application of Smith prediction technique in designing of variable structure control systems for plants with time delay. Proc 1999 IEEE Industrial Electronics, Bled, Slovenia, 1999: 1111

[9]

Kurokawa F, Maruta H, Sakemi J, et al. A new prediction based digital control DC-DC converter. Proc 2010 Ninth International Conference on Machine Learning and Applications, Washington, USA, 2010: 720

[10]

Kurokawa F, Ueno K, Maruta H, et al. A new digital control DC-DC converter with repetition neural network prediction. Proc 2011 IEEE Ninth International Conference on Power Electronics and Drive Systems, Singapore, 2011: 648

[1]

Yan W, Li W H, Liu R. A noise-shaped buck DC-DC converter with improved light-load efficiency and fast transient response[J]. IEEE Trans Power Electron, 2011, 26(12): 3908. doi: 10.1109/TPEL.2011.2136361

[2]

Tsai J C, Chen C L, Lee Y H. Modified hysteretic current control (MHCC) for improving transient response of boost converter[J]. IEEE Trans Circuits Syst Ⅰ:Regular Papers, 2011, 58(8): 1967. doi: 10.1109/TCSI.2011.2106231

[3]

Meyer E, Zhang Z L, Liu Y F. Controlled auxiliary circuit to improve the unloading transient response of buck converters[J]. IEEE Trans Power Electron, 2010, 25(4): 806. doi: 10.1109/TPEL.2009.2032362

[4]

Smedley K M, Cuk S. One cycle control of switching converters[J]. IEEE Trans Power Electron, 1995, 10(6): 625. doi: 10.1109/63.471281

[5]

Bibian S, Jin H. Time delay compensation of digital control for DC switch mode power supplies using prediction techniques[J]. IEEE Trans Power Electron, 2000, 15(5): 835. doi: 10.1109/63.867672

[6]

Lee A T L, Chan P C H. Adaptive prediction in digitally controlled buck converter with fast load transient response. Proc 13th IEEE Control and Modeling for Power Electronics, Kyoto, Japan, 2012

[7]

Leung K K S, Chung H S H. State trajectory prediction control for boost converters. Proc 2004 Circuits and Systems, Vancouver, Canada, 2004: V-556

[8]

Nasab T M M. Application of Smith prediction technique in designing of variable structure control systems for plants with time delay. Proc 1999 IEEE Industrial Electronics, Bled, Slovenia, 1999: 1111

[9]

Kurokawa F, Maruta H, Sakemi J, et al. A new prediction based digital control DC-DC converter. Proc 2010 Ninth International Conference on Machine Learning and Applications, Washington, USA, 2010: 720

[10]

Kurokawa F, Ueno K, Maruta H, et al. A new digital control DC-DC converter with repetition neural network prediction. Proc 2011 IEEE Ninth International Conference on Power Electronics and Drive Systems, Singapore, 2011: 648

[1]

Xin Weiping, Zhuang Yiqi, Li Xiaoming. An embeddable SOC real-time prediction technology for TDDB. J. Semicond., 2012, 33(11): 115009. doi: 10.1088/1674-4926/33/11/115009

[2]

Ling Yang, Guoding Dai, Chongwei Xu, Yuezhi Liu. A current-mode DC-DC buck converter with adaptive zero compensation. J. Semicond., 2013, 34(8): 085012. doi: 10.1088/1674-4926/34/8/085012

[3]

Han Wang, Maomao Sun. A dynamic-biased dual-loop-feedback CMOS LDO regulator with fast transient response. J. Semicond., 2014, 35(4): 045005. doi: 10.1088/1674-4926/35/4/045005

[4]

Zhao Yi, Wan Xinggong, Xu Xiangming. One Method for Fast Gate Oxide TDDB Lifetime Prediction. J. Semicond., 2005, 26(12): 2271.

[5]

Han Wang, Chao Gou, Kai Luo. A fully on-chip fast-transient NMOS low dropout voltage regulator with quasi floating gate pass element. J. Semicond., 2017, 38(4): 045002. doi: 10.1088/1674-4926/38/4/045002

[6]

Han Wang, Lin Tan. A transient-enhanced NMOS low dropout voltage regulator with parallel feedback compensation. J. Semicond., 2016, 37(2): 025005. doi: 10.1088/1674-4926/37/2/025005

[7]

Chen Hua, Li Shun, Niu Qi, Zhou Feng. A Novel Hybrid DPWM for Digital DC-DC Converters. J. Semicond., 2008, 29(2): 275.

[8]

Li Yanming, Lai Xinquan, Yuan Bing, Jia Xinzhang, Zhang Wei, Ye Qiang. Design and Implementation of a Buck DC-DC Controller with Adaptive On-Time Control. J. Semicond., 2008, 29(7): 1396.

[9]

Mingyang Chen, Menglian Zhao, Xiaobo Wu. A fixed-frequency fast transient response DC-DC controller for VRMs. J. Semicond., 2013, 34(12): 125002. doi: 10.1088/1674-4926/34/12/125002

[10]

Chen Hai, Zhao Menglian, Wu Xiaobo, Yan Xiaolang. Current Share Control IC Design for Paralleled DC/DC Converters. J. Semicond., 2007, 28(7): 1017.

[11]

Ma Zhuo, Guo Yang, Duan Zhikui, Xie Lunguo, Chen Jihua, Yu Jinshan. A fast transient response low dropout regulator with current control methodology. J. Semicond., 2011, 32(8): 085007. doi: 10.1088/1674-4926/32/8/085007

[12]

Chen Dongpo, He Lenian, Yan Xiaolang. A Current-Mode DC-DC Buck Converter with High Stability and Fast Dynamic Response. J. Semicond., 2006, 27(10): 1742.

[13]

Zhaoxin Ma, Xuefei Bai, Lu Huang. Design of a delay-locked-loop-based time-to-digital converter. J. Semicond., 2013, 34(9): 095003. doi: 10.1088/1674-4926/34/9/095003

[14]

Li Yanming, Lai Xinquan, Ye Qiang, Yuan Bing, Jia Xinzhang, Chen Fuji. A current-mode buck DC–DC controller with adaptive on-time control. J. Semicond., 2009, 30(2): 025007. doi: 10.1088/1674-4926/30/2/025007

[15]

Wang Hongyi, Lai Xinquan, Li Yushan. Reducing the Slope Compensation Effect on the Load Capacity of DC-DC Converters. J. Semicond., 2006, 27(8): 1484.

[16]

Ye Qiang, Lai Xinquan, Li Yanming, Yuan Bing, Chen Fuji. A Piecewise Linear Slope Compensation Circuit for DC-DC Converters. J. Semicond., 2008, 29(2): 281.

[17]

He Xiaofeng, Mo Taishan, Ma Chengyan, Ye Tianchun. A novel analog/digital reconfigurable automatic gain control with a novel DC offset cancellation circuit. J. Semicond., 2011, 32(2): 025002. doi: 10.1088/1674-4926/32/2/025002

[18]

Jie Li, Miao Yang, Weifeng Sun, Xiaoxia Lu, Shen Xu, Shengli Lu. A fast novel soft-start circuit for peak current-mode DC-DC buck converters. J. Semicond., 2013, 34(2): 025006. doi: 10.1088/1674-4926/34/2/025006

[19]

Yuan Bing, Lai Xinquan, Ye Qiang, Li Yanming, Jia Xinzhang. An Integrated Current-Sensing Circuit for Current-Mode DC-DC Buck Converters. J. Semicond., 2008, 29(8): 1627.

[20]

Wang Qing, Chen Ning, Sun Weifeng, Lu Shengli, Shi Longxing. A digital prediction algorithm for a single-phase boost PFC. J. Semicond., 2012, 33(12): 125007. doi: 10.1088/1674-4926/33/12/125007

Search

Advanced Search >>

GET CITATION

Q Wang, N Chen, S Xu, W F Sun, L X Shi. A novel trajectory prediction control for proximate time-optimal digital control DC-DC converters[J]. J. Semicond., 2014, 35(9): 095010. doi: 10.1088/1674-4926/35/9/095010.

Export: BibTex EndNote

Article Metrics

Article views: 1033 Times PDF downloads: 5 Times Cited by: 0 Times

History

Manuscript received: 31 October 2013 Manuscript revised: 15 March 2014 Online: Published: 01 September 2014

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误