J. Semicond. > Volume 36 > Issue 10 > Article Number: 102002

First-principle study on energy gap of CNT superlattice structure

Zhonghua Yang 1, 2, , Guili Liu 1, , Yingdong Qu 2, and Rongde Li 2,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: By using the CASTEP modules based on density functional theory, the electronic structures of B/N pair co-doping (5, 5) CNT rings superlattice have been investigated.The calculation results show that the formation energies of B/N pair co-doping CNT rings are negative, indicating that the new type construction will probably be stable.The band structure and state density of the new type construction show that the energy gap is opened by B/N co-doping in (5, 5) metallic CNT and the metallic CNT is changed into a semiconductor.The energy gap of pure CNT is strongly sensitive to the changes of CNT diameter but the energy gap of B/N co-doping CNT rings remains stable when the diameters are in a reasonable scope, which means that the requirements for the production of CNT have been reduced.The compressive deformation effects mean that the energy gaps are narrowed, which is equivalent to enhancing the doping volume concentration.However, the changes of the energy gap under the tensile deformation effect are opposite.Achieving control of the electrical conductivity of CNT has an important significance for electron devices.

Key words: carbon nanotubedopingdensity functional theoryelectrical conductivity

Abstract: By using the CASTEP modules based on density functional theory, the electronic structures of B/N pair co-doping (5, 5) CNT rings superlattice have been investigated.The calculation results show that the formation energies of B/N pair co-doping CNT rings are negative, indicating that the new type construction will probably be stable.The band structure and state density of the new type construction show that the energy gap is opened by B/N co-doping in (5, 5) metallic CNT and the metallic CNT is changed into a semiconductor.The energy gap of pure CNT is strongly sensitive to the changes of CNT diameter but the energy gap of B/N co-doping CNT rings remains stable when the diameters are in a reasonable scope, which means that the requirements for the production of CNT have been reduced.The compressive deformation effects mean that the energy gaps are narrowed, which is equivalent to enhancing the doping volume concentration.However, the changes of the energy gap under the tensile deformation effect are opposite.Achieving control of the electrical conductivity of CNT has an important significance for electron devices.

Key words: carbon nanotubedopingdensity functional theoryelectrical conductivity



References:

[1]

Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348): 56.

[2]

Song J X, Yang Y T, Liu H X. Electronic transport properties of the armchair silicon carbide nanotube[J]. Journal of Semiconductors, 2010, 31(11): 114003.

[3]

Wang F X, Cai X L, Yan D W. Synthesis and luminescence characteristics of ZnO nanotubes[J]. Journal of Semiconductors, 2014, 35(9): 093004.

[4]

Bala V, Seema K, Kumar R. Structural and electronic properties of endohedral doped SWCNTs:a DFT study[J]. Physica E, 2015, 65: 68.

[5]

Jiao N D, Wang Y C, Xi N. AFM based anodic oxidation and its application to oxidative cutting and welding of CNT[J]. Science in China Ser E:Tech Sci, 2009, 52(11): 3149.

[6]

Chen Q, Wei X L. In-situ manipulation, fabricating and measuring nanostructures inside SEM[J]. J Chin Electr Microsc Soc, 2011, 30(6): 473.

[7]

Knittle E, Kaner R B, Jeanloz R. High-pressure synthesis, characterization, and equation of state of cubic C-BN solid solutions[J]. Phys Rev B, 1995, 51: 12149.

[8]

Rassato J, Baierle R J, Orellana W. Stability and electronic properties of vacancies and antisites in BC2N nanotubes[J]. Phys Rev B, 2007, 75(23): 5401.

[9]

Schrodinge E. An undulatory theory of the mechanics of atoms and molecules[J]. Phys Rev, 1926, 28(6): 1049.

[10]

Philip J H, Keith R, Matt I J P. Density functional theory in the solid state[J]. Phil Trans R Soc A, 2014, 372: 20130270.

[11]

Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Phys Rev B, 1992, 45(23): 13244.

[12]

Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Phys Rev B, 1990, 41(11): 7892.

[13]

Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Phys Rev B, 1976, 13(12): 5188.

[14]

Yang K, Wang Y F, Zhou Q. Density functional theory study on the energy gap and electronic structure of armchair carbon nanotube[J]. J Mater Sin Eng, 2013, 31(5): 748.

[1]

Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348): 56.

[2]

Song J X, Yang Y T, Liu H X. Electronic transport properties of the armchair silicon carbide nanotube[J]. Journal of Semiconductors, 2010, 31(11): 114003.

[3]

Wang F X, Cai X L, Yan D W. Synthesis and luminescence characteristics of ZnO nanotubes[J]. Journal of Semiconductors, 2014, 35(9): 093004.

[4]

Bala V, Seema K, Kumar R. Structural and electronic properties of endohedral doped SWCNTs:a DFT study[J]. Physica E, 2015, 65: 68.

[5]

Jiao N D, Wang Y C, Xi N. AFM based anodic oxidation and its application to oxidative cutting and welding of CNT[J]. Science in China Ser E:Tech Sci, 2009, 52(11): 3149.

[6]

Chen Q, Wei X L. In-situ manipulation, fabricating and measuring nanostructures inside SEM[J]. J Chin Electr Microsc Soc, 2011, 30(6): 473.

[7]

Knittle E, Kaner R B, Jeanloz R. High-pressure synthesis, characterization, and equation of state of cubic C-BN solid solutions[J]. Phys Rev B, 1995, 51: 12149.

[8]

Rassato J, Baierle R J, Orellana W. Stability and electronic properties of vacancies and antisites in BC2N nanotubes[J]. Phys Rev B, 2007, 75(23): 5401.

[9]

Schrodinge E. An undulatory theory of the mechanics of atoms and molecules[J]. Phys Rev, 1926, 28(6): 1049.

[10]

Philip J H, Keith R, Matt I J P. Density functional theory in the solid state[J]. Phil Trans R Soc A, 2014, 372: 20130270.

[11]

Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Phys Rev B, 1992, 45(23): 13244.

[12]

Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Phys Rev B, 1990, 41(11): 7892.

[13]

Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Phys Rev B, 1976, 13(12): 5188.

[14]

Yang K, Wang Y F, Zhou Q. Density functional theory study on the energy gap and electronic structure of armchair carbon nanotube[J]. J Mater Sin Eng, 2013, 31(5): 748.

[1]

Said Benramache, Okba Belahssen, Hachemi Ben Temam. Effect of band gap energy on the electrical conductivity in doped ZnO thin film. J. Semicond., 2014, 35(7): 073001. doi: 10.1088/1674-4926/35/7/073001

[2]

Chen Shaofeng, Xia Shanhong, Song Qinglin, Hu Ping' an, Liu Yunqi, Zhu Daoben. Properties of Carbon Nanotube Field Emission. J. Semicond., 2003, 24(S1): 166.

[3]

Dong Chen, Yuping Cang, Yongsong Luo. Electronic structures and phase transition characters of β-, P61-, P62- and δ-Si3N4 under extreme conditions: a density functional theory study. J. Semicond., 2015, 36(2): 023003. doi: 10.1088/1674-4926/36/2/023003

[4]

Amandeep Singh, Dinesh Kumar Saini, Dinesh Agarwal, Sajal Aggarwal, Mamta Khosla, Balwinder Raj. Modeling and simulation of carbon nanotube field effect transistor and its circuit application. J. Semicond., 2016, 37(7): 074001. doi: 10.1088/1674-4926/37/7/074001

[5]

Xiao Xiaojing, Ye Yun, Zheng Longwu, Guo Tailiang. Improved field emission properties of carbon nanotube cathodes by nickel electroplating and corrosion. J. Semicond., 2012, 33(5): 053004. doi: 10.1088/1674-4926/33/5/053004

[6]

Li Xin, He Yongning, Liu Weihua, Zhu Changchun. Improving Carbon Nanotube Field Emission Display Luminescence Uniformity by Introducing a Reactive Current Limiting Layer. J. Semicond., 2008, 29(3): 574.

[7]

Tanu Goyal, Manoj Kumar Majumder, Brajesh Kumar Kaushik. Propagation delay and power dissipation for different aspect ratio of single-walled carbon nanotube bundled TSV. J. Semicond., 2015, 36(6): 065001. doi: 10.1088/1674-4926/36/6/065001

[8]

Sun Hao, Qi Ming, Xu Anhuai, Ai Likun, Su Shubing, Liu Xinyu, Liu Xunchun, Qian He. Analysis of an InP/InGaAs/InP DHBT with Composite Doping Collector. J. Semicond., 2006, 27(8): 1431.

[9]

Fang Zhou. Transmission line model of carbon nanotubes: through the Boltzmann transport equation. J. Semicond., 2011, 32(6): 062002. doi: 10.1088/1674-4926/32/6/062002

[10]

Jingxia Wu, Yang Hong, Bingjie Wang. The applications of carbon nanomaterials in fiber-shaped energy storage devices. J. Semicond., 2018, 39(1): 011004. doi: 10.1088/1674-4926/39/1/011004

[11]

Cheng Buwen, Yao Fei, Xue Chunlai, Zhang Jianguo, Li Chuanbo, Mao Rongwei, Zuo Yuhua, Luo Liping, Wang Qiming. Strain Compensation in SiGe by Boron Doping. J. Semicond., 2005, 26(S1): 39.

[12]

R. M. Hodlur, M. K. Rabinal. Influence of pH of spray solution on optoelectronic properties of cadmium oxide thin films. J. Semicond., 2015, 36(3): 033003. doi: 10.1088/1674-4926/36/3/033003

[13]

M. Benaida, K. E. Aiadi, S. Mahtout, S. Djaadi, W. Rammal, M. Harb. Growth behavior and electronic properties of Gen + 1 and AsGen (n = 1–20) clusters: a DFT study. J. Semicond., 2019, 40(3): 032101. doi: 10.1088/1674-4926/40/3/032101

[14]

Ying Yang, Qing Feng, Weihua Wang, Yin Wang. First-principle study on the electronic and optical properties of the anatase TiO2 (101) surface. J. Semicond., 2013, 34(7): 073004. doi: 10.1088/1674-4926/34/7/073004

[15]

Harsimran Kaur, Karamjit Singh Sandha. Effect of electric field on metallic SWCNT interconnects for nanoscale technologies. J. Semicond., 2015, 36(3): 035001. doi: 10.1088/1674-4926/36/3/035001

[16]

Yuxiang Qin, Deyan Hua, Xiao Li. First principles study on the surface-and orientation-dependent electronic structure of a WO3 nanowire. J. Semicond., 2013, 34(6): 062002. doi: 10.1088/1674-4926/34/6/062002

[17]

Yuping Cang, Xiaoling Yao, Dong Chen, Fan Yang, Huiming Yang. First-principles study on the electronic, elastic and thermodynamic properties of three novel germanium nitrides. J. Semicond., 2016, 37(7): 072002. doi: 10.1088/1674-4926/37/7/072002

[18]

Dahua Ren, Baoyan Xiang, Cheng Hu, Kai Qian, Xinlu Cheng. The electronic and optical properties of amorphous silica with hydrogen defects by ab initio calculations. J. Semicond., 2018, 39(4): 042002. doi: 10.1088/1674-4926/39/4/042002

[19]

Liu Hongxia, Zhang Heming, Song Jiuxu, Zhang Zhiyong. Electronic structures of an (8, 0) boron nitride/carbon nanotube heterojunction. J. Semicond., 2010, 31(1): 013001. doi: 10.1088/1674-4926/31/1/013001

[20]

Zhang Fan, Zhao Youwen, Dong Zhiyuan, Zhang Rui, Yang Jun. Bulk Single Crystal Growth and Properties of In-Doped ZnO. J. Semicond., 2008, 29(8): 1540.

Search

Advanced Search >>

GET CITATION

Z H Yang, G L Liu, Y D Qu, R D Li. First-principle study on energy gap of CNT superlattice structure[J]. J. Semicond., 2015, 36(10): 102002. doi: 10.1088/1674-4926/36/10/102002.

Export: BibTex EndNote

Article Metrics

Article views: 1237 Times PDF downloads: 11 Times Cited by: 0 Times

History

Manuscript received: 02 April 2015 Manuscript revised: Online: Published: 01 October 2015

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误