J. Semicond. > Volume 36 > Issue 10 > Article Number: 102003

Effect of N and Fe codoping on the electronic structure and optical properties of TiO2 from first-principles study

Zhuomao Zhu 1, , Baoan Bian 1, and Haifeng Shi 1, 2,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: The electronic structure and optical properties of N and Fe codoping TiO2 have been investigated by first-principles calculations based on density functional theory.The calculated results indicate that the stability of N and Fe codoping TiO2 will change at different substitutional sites of N and Fe.The mechanism of band gap narrowing of doping TiO2 is discussed by investigating the density of state.The different substitutional site of N and Fe in codoping TiO2 influences the visible-light absorption.An increased visible-light absorption for doping TiO2 results from the synergistic effect of N and Fe codoping.Therefore, N and Fe codoping may enhance the visible-light photocatalytic activity of TiO2.

Key words: codopingfirst-principleelectronic structureoptical properties

Abstract: The electronic structure and optical properties of N and Fe codoping TiO2 have been investigated by first-principles calculations based on density functional theory.The calculated results indicate that the stability of N and Fe codoping TiO2 will change at different substitutional sites of N and Fe.The mechanism of band gap narrowing of doping TiO2 is discussed by investigating the density of state.The different substitutional site of N and Fe in codoping TiO2 influences the visible-light absorption.An increased visible-light absorption for doping TiO2 results from the synergistic effect of N and Fe codoping.Therefore, N and Fe codoping may enhance the visible-light photocatalytic activity of TiO2.

Key words: codopingfirst-principleelectronic structureoptical properties



References:

[1]

Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 37: 238.

[2]

Gratzel M. Photoelectrochemical cells[J]. Nature, 2001, 414: 338.

[3]

Hernandez-Alonso M D, Fresno F, Suarez S. Development of alternative photocatalysts to TiO2:challenges and opportunities[J]. Energy and Environmental Science, 2009, 2: 1231.

[4]

Valentin C D, Pacchioni G, Selloni A. Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations[J]. J Phys Chem B, 2005, 109: 11414.

[5]

Chen D, Jiang Z Y, Geng J Q. Carbon and nitrogen co-doped TiO2 with enhanced visible-light photocatalytic activity[J]. Ind Eng Chem Res, 2007, 46: 2741.

[6]

Zhou J K, Lv L, Yu J Q. Synthesis of self-organized polycrystalline F-doped TiO2 hollow microspheres and their photocatalytic activity under visible light[J]. J Phys Chem C, 2008, 112: 5316.

[7]

Ho W K, Yu J C, Lee S C. Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity[J]. J Solid State Chem, 2006, 179: 1171.

[8]

Li L Z, Yang W Q, Ding Y C. First principle study of the electronic structure of hafnium-doped anatase TiO2[J]. Journal of Semiconductors, 2012, 33: 012002.

[9]

Zhang S M, Chen Y Y, Yu Y. Synthesis, characterization of Cr-doped TiO2 nanotubes with high photocatalytic activity[J]. J Nanopart Res, 2008, 10: 871.

[10]

Deng L X, Wang S R, Liu D Y. Synthesis, characterization of Fe-doped TiO2 nanotubes with high photocatalytic activity[J]. Catal Lett, 2009, 129: 513.

[11]

Kim D H, Lee K S, Kim Y S. Photocatalytic activity of Ni 8 wt%-doped TiO2 photocatalyst synthesized by mechanical alloying under visible light[J]. J Am Ceram Soc, 2006, 89: 515.

[12]

Zhang R H, Wang Q, Liang J. Optical properties of N and transition metal R (R=V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) codoped anatase TiO2[J]. Physica B, 2012, 407: 2709.

[13]

Meng Q S, Wang T, Liu E Z. Phys.Understanding electronic and optical properties of anatase TiO2 photocatalysts co-doped with nitrogen and transition metals[J]. Chem Chem Phys, 2013, 15: 9549.

[14]

Xu W H, Ma X G, Wu T. First principles study on the synergistic effects of codoped anatase TiO2 photocatalysts codoped with N/V or C/Cr[J]. Journal of Semiconductors, 2014, 35: 102002.

[15]

Wei H Y, Wu Y S, Lun N. Preparation and photocatalysis of TiO2 nanoparticles co-doped with nitrogen and lanthanum[J]. J Mater Sci, 2004, 39: 1305.

[16]

Gong J Y, Yang C Z, Zhang J D. Origin of photocatalytic activity of W/N-codoped TiO2:H2 production and DFT calculation with GGA+U[J]. Appl Catal B:Environ, 2014, 152: 73.

[17]

Charanpahari A, Umare S S, Sasikala R. Effect of Ce, N and S multi-doping on the photocatalytic activity of TiO2[J]. Appl Surf Sci, 2013, 282: 408.

[18]

Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77: 3865.

[19]

Kuang X Y, Lu C. Characterization of electronic transition energies and trigonal distortion of the (FeO6)9- coordination complex in the Al2O3:Fe3+ system:a simple method for transitionmetal ions in a trigonal ligand field[J]. J Phys Chem A, 2006, 110: 11353.

[20]

Zhou P, Yu J G, Wang Y X. The new understanding on photocatalytic mechanism of visible-light response N-S codoped anatase TiO2 by first-principles[J]. Appl Catal B:Environ, 2013, 142: 45.

[21]

Batzill M, Morales E H, Diebold U. Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase[J]. Phys Rev Lett, 2006, 96: 026103.

[22]

Shi W M, Chen Q F, Xu Y. A first-principles calculation on the electronic properties of Si/N-codoped TiO2[J]. Appl Surf Sci, 2011, 257: 3000.

[23]

Long R, English N J. First-principles calculation of nitrogen-tungsten codoping effects on the band structure of anatasetitania[J]. Appl Phys Lett, 2009, 94: 132102.

[24]

Mi L, Xu P, Shen H. First-principles calculation of N:H codoping effect on energy gap narrowing of TiO2[J]. Appl Phys Lett, 2007, 90: 171909.

[25]

Zhang Z B, Wang C C, Zakaria R. Role of particle size in nanocrystalline TiO2-based photocatalysts[J]. J Phys Chem B, 1998, 102: 10871.

[26]

Wang C Y, Bahnemann D W, Dohrmann J K. A novel preparation of iron-doped TiO2 nanoparticles with enhanced photocatalytic activity[J]. Chem Commun, 2000, 16: 1539.

[27]

Asahi R, Morikawa T, Ohwaki T. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293: 269.

[28]

Tang J W, Zou Z G, Ye J H. Photocatalytic decomposition of organic contaminants by Bi2WO6 under visible light irradiation[J]. Catal Lett, 2004, 92: 53.

[29]

Lai H H, Kuznetsov V L, Egdell R G. Electronic structure of ternary CdxZn1-xO (0≤ x≤ 0[J]. alloys.Appl Phys Lett,, 2012, 100: 072106.

[1]

Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 37: 238.

[2]

Gratzel M. Photoelectrochemical cells[J]. Nature, 2001, 414: 338.

[3]

Hernandez-Alonso M D, Fresno F, Suarez S. Development of alternative photocatalysts to TiO2:challenges and opportunities[J]. Energy and Environmental Science, 2009, 2: 1231.

[4]

Valentin C D, Pacchioni G, Selloni A. Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations[J]. J Phys Chem B, 2005, 109: 11414.

[5]

Chen D, Jiang Z Y, Geng J Q. Carbon and nitrogen co-doped TiO2 with enhanced visible-light photocatalytic activity[J]. Ind Eng Chem Res, 2007, 46: 2741.

[6]

Zhou J K, Lv L, Yu J Q. Synthesis of self-organized polycrystalline F-doped TiO2 hollow microspheres and their photocatalytic activity under visible light[J]. J Phys Chem C, 2008, 112: 5316.

[7]

Ho W K, Yu J C, Lee S C. Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity[J]. J Solid State Chem, 2006, 179: 1171.

[8]

Li L Z, Yang W Q, Ding Y C. First principle study of the electronic structure of hafnium-doped anatase TiO2[J]. Journal of Semiconductors, 2012, 33: 012002.

[9]

Zhang S M, Chen Y Y, Yu Y. Synthesis, characterization of Cr-doped TiO2 nanotubes with high photocatalytic activity[J]. J Nanopart Res, 2008, 10: 871.

[10]

Deng L X, Wang S R, Liu D Y. Synthesis, characterization of Fe-doped TiO2 nanotubes with high photocatalytic activity[J]. Catal Lett, 2009, 129: 513.

[11]

Kim D H, Lee K S, Kim Y S. Photocatalytic activity of Ni 8 wt%-doped TiO2 photocatalyst synthesized by mechanical alloying under visible light[J]. J Am Ceram Soc, 2006, 89: 515.

[12]

Zhang R H, Wang Q, Liang J. Optical properties of N and transition metal R (R=V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) codoped anatase TiO2[J]. Physica B, 2012, 407: 2709.

[13]

Meng Q S, Wang T, Liu E Z. Phys.Understanding electronic and optical properties of anatase TiO2 photocatalysts co-doped with nitrogen and transition metals[J]. Chem Chem Phys, 2013, 15: 9549.

[14]

Xu W H, Ma X G, Wu T. First principles study on the synergistic effects of codoped anatase TiO2 photocatalysts codoped with N/V or C/Cr[J]. Journal of Semiconductors, 2014, 35: 102002.

[15]

Wei H Y, Wu Y S, Lun N. Preparation and photocatalysis of TiO2 nanoparticles co-doped with nitrogen and lanthanum[J]. J Mater Sci, 2004, 39: 1305.

[16]

Gong J Y, Yang C Z, Zhang J D. Origin of photocatalytic activity of W/N-codoped TiO2:H2 production and DFT calculation with GGA+U[J]. Appl Catal B:Environ, 2014, 152: 73.

[17]

Charanpahari A, Umare S S, Sasikala R. Effect of Ce, N and S multi-doping on the photocatalytic activity of TiO2[J]. Appl Surf Sci, 2013, 282: 408.

[18]

Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77: 3865.

[19]

Kuang X Y, Lu C. Characterization of electronic transition energies and trigonal distortion of the (FeO6)9- coordination complex in the Al2O3:Fe3+ system:a simple method for transitionmetal ions in a trigonal ligand field[J]. J Phys Chem A, 2006, 110: 11353.

[20]

Zhou P, Yu J G, Wang Y X. The new understanding on photocatalytic mechanism of visible-light response N-S codoped anatase TiO2 by first-principles[J]. Appl Catal B:Environ, 2013, 142: 45.

[21]

Batzill M, Morales E H, Diebold U. Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase[J]. Phys Rev Lett, 2006, 96: 026103.

[22]

Shi W M, Chen Q F, Xu Y. A first-principles calculation on the electronic properties of Si/N-codoped TiO2[J]. Appl Surf Sci, 2011, 257: 3000.

[23]

Long R, English N J. First-principles calculation of nitrogen-tungsten codoping effects on the band structure of anatasetitania[J]. Appl Phys Lett, 2009, 94: 132102.

[24]

Mi L, Xu P, Shen H. First-principles calculation of N:H codoping effect on energy gap narrowing of TiO2[J]. Appl Phys Lett, 2007, 90: 171909.

[25]

Zhang Z B, Wang C C, Zakaria R. Role of particle size in nanocrystalline TiO2-based photocatalysts[J]. J Phys Chem B, 1998, 102: 10871.

[26]

Wang C Y, Bahnemann D W, Dohrmann J K. A novel preparation of iron-doped TiO2 nanoparticles with enhanced photocatalytic activity[J]. Chem Commun, 2000, 16: 1539.

[27]

Asahi R, Morikawa T, Ohwaki T. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293: 269.

[28]

Tang J W, Zou Z G, Ye J H. Photocatalytic decomposition of organic contaminants by Bi2WO6 under visible light irradiation[J]. Catal Lett, 2004, 92: 53.

[29]

Lai H H, Kuznetsov V L, Egdell R G. Electronic structure of ternary CdxZn1-xO (0≤ x≤ 0[J]. alloys.Appl Phys Lett,, 2012, 100: 072106.

Search

Advanced Search >>

GET CITATION

Z M Zhu, B A Bian, H F Shi. Effect of N and Fe codoping on the electronic structure and optical properties of TiO2 from first-principles study[J]. J. Semicond., 2015, 36(10): 102003. doi: 10.1088/1674-4926/36/10/102003.

Export: BibTex EndNote

Article Metrics

Article views: 1464 Times PDF downloads: 11 Times Cited by: 0 Times

History

Manuscript received: 22 December 2014 Manuscript revised: Online: Published: 01 October 2015

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误