J. Semicond. > Volume 36 > Issue 10 > Article Number: 103001

ZnS thin films deposition by thermal evaporation for photovoltaic applications

K. Benyahia 1, , A. Benhaya 2, and M. S. Aida 3,

+ Author Affilications + Find other works by these authors

PDF

Abstract: ZnS thin films were deposited on a glass substrate by thermal evaporation from millimetric crystals of ZnS.The structural, compositional and optical properties of the films are studied by X-ray diffraction, SEM microscopy, and UV-VIS spectroscopy.The obtained results show that the films are pin hole free and have a cubic zinc blend structure with (111) preferential orientation.The estimated optical band gap is 3.5 eV and the refractive index in the visible wavelength ranges from 2.5 to 1.8.The good cubic structure obtained for thin layers enabled us to conclude that the prepared ZnS films may have application as buffer layer in replacement of the harmful CdS in CIGS thin film solar cells or as an antireflection coating in silicon-based solar cells.

Key words: ZnSthin filmsthermal evaporationbuffer layerantireflection coating

Abstract: ZnS thin films were deposited on a glass substrate by thermal evaporation from millimetric crystals of ZnS.The structural, compositional and optical properties of the films are studied by X-ray diffraction, SEM microscopy, and UV-VIS spectroscopy.The obtained results show that the films are pin hole free and have a cubic zinc blend structure with (111) preferential orientation.The estimated optical band gap is 3.5 eV and the refractive index in the visible wavelength ranges from 2.5 to 1.8.The good cubic structure obtained for thin layers enabled us to conclude that the prepared ZnS films may have application as buffer layer in replacement of the harmful CdS in CIGS thin film solar cells or as an antireflection coating in silicon-based solar cells.

Key words: ZnSthin filmsthermal evaporationbuffer layerantireflection coating



References:

[1]

Ruffner J A, Hilmel M D, Mizrahi V. Effects of low substrate temperature and ion assisted deposition on composition, optical properties, and stress of ZnS thin films[J]. Appl Opt, 1989, 28: 5209.

[2]

Vidol J, de Melo O, Vigil O. Influence of magnetic field and type of substrate on the growth of ZnS films by chemical bath[J]. Thin Solid Films, 2002, 419: 118.

[3]

Yamaga S, Yoshokawa A, Kasain H J. Electrical and optical properties of donor doped ZnS films grown by low-pressure MOCVD[J]. Cryst Growth, 1998, 86: 252.

[4]

Armstrong S, Datta P K, Miles R W. Properties of zinc sulfur selenide deposited using a close-spaced sublimation method[J]. Thin Solid Films, 2002, 403.

[5]

Shao L X, Chang K H, Hwang H L. Zinc sulfide thin films deposited by RF reactive sputtering for photovoltaic applications[J]. Appl Surf Sci, 2003, 212.

[6]

Hillie K H, Swart H C. Effects of SnO2 surface coating on the degradation of ZnS thin film phosphor[J]. Appl Surf Sci, 2007, 253: 8513.

[7]

Wu X, Lai F, Lin L. Optical inhomogeneity of ZnS films deposited by thermal evaporation[J]. Appl Surf Sci, 2008, 254: 6455.

[8]

Darenfed O, Aida M S, Hafdallah A. Substrate temperature influence on ZnS thin films prepared by ultrasonic spray[J]. Thin Solid Films, 2009, 518: 1082.

[9]

Lekiket H, Aida M S. Chemical bath deposition of nanocrystalline ZnS thin films:influence of pH on the reaction solution[J]. Mater Sci Semicond Process, 2013, 16: 1753.

[10]

Subbaiah Y P V, Prathap P, Reddy K T R. Structural, electrical and optical properties of ZnS films deposited by close-spaced evaporation[J]. Appl Surf Sci, 2006, 253: 2409.

[11]

Nasir E M. Surface morphological and structural properties of ZnS and ZnS:Al thin films[J]. International Journal of Innovative Research in Science, Engineering and Technology, 2014, 3: 8114.

[12]

Urakawa Y, Gleason K K. Tunable photoluminescence via thermally evaporated ZnS ultra thin films[J]. Journal of Coating Science and Technology, 2014, 1: 46.

[13]

Yuvaraj D, Sathyanarayanan M, Rao K N. Growth of ZnS Nanostructures in High Vacuum by Thermal Evaporation[J]. Journal of Nanoscience and Nanotechnology, 2013, 13: 1.

[14]

Xue S. Effects of thermal annealing on the optical properties of Ar ion irradiated ZnS films[J]. Ceramics Intern, 2013, 39: 6577.

[15]

Jin C, Kim H, Baek K. Effects of coating and thermal annealing on the photoluminescence properties of ZnS/ZnO onedimensional radial heterostructures[J]. Mater Sci Eng B, 2010, 170: 143.

[16]

Li B H, Zhao D X, Yao B. The growth of single cubic phase ZnS thin films on silica glass by plasma-assisted metalorganic chemical vapor deposition[J]. Thin Solid Films, 2006, 513: 114.

[17]

Berger L I. Semiconductor materials[J]. Boca Raton, FL:CRC Press, 1997.

[18]

Fang X S, Zhai T Y, Gautam U K. Recent advances in zinc sulfide nanostructures[J]. Progress in Mater Sci, 2011, 56: 175.

[19]

Malssel L I, Glang R. Handbook of thin film technology[J]. New York:McGraw Hill Book Company, 1970.

[20]

Dhanam M, Manoj P K, Prabhu R R. High-temperature conductivity in chemical bath deposited copper selenide thin films[J]. J Cryst Growth, 2005, 280: 425.

[21]

Studenikin S A, Golego N, Cocivera M. Optical and electrical properties of undoped ZnO films grown by spray pyrolysis of zinc nitrate solution[J]. J Appl Phys, 1998, 83: 2104.

[22]

Pankove I V. Optical processes in semiconductors[J]. New York:Dover Inc, 1973, 36.

[23]

Tauc J J. Amorphous and liquid semiconductors[J]. Plenum, London, 1974.

[24]

Davis E A, Mott N F. Conduction in non-crystalline systems V[J]. Philos Mag, 1970, 22: 903.

[25]

Manzor K, Vadera S R, Kumar N. Synthesis and photoluminescent properties of ZnS nanocrystals doped with copper and halogen[J]. Mater Chem Phys, 2003, 82: 718.

[26]

Urbach F. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids[J]. Phys Rev, 1953, 92: 1324.

[27]

Pramod K S, Varadan V K, Varadan V V. Optical, dielectric and fatigue properties of sol-gel-derived 2μm thick Pb(Zr0[J]. Smart Mater Struct, 2002, 11: 956.

[28]

Abdelrahman A E, Yunus W M M, Arof A K. Optical properties of tin sulphide (SnS) thin film estimated from transmission spectra[J]. J Non-Crystalline Solids, 2012, 358: 1447.

[1]

Ruffner J A, Hilmel M D, Mizrahi V. Effects of low substrate temperature and ion assisted deposition on composition, optical properties, and stress of ZnS thin films[J]. Appl Opt, 1989, 28: 5209.

[2]

Vidol J, de Melo O, Vigil O. Influence of magnetic field and type of substrate on the growth of ZnS films by chemical bath[J]. Thin Solid Films, 2002, 419: 118.

[3]

Yamaga S, Yoshokawa A, Kasain H J. Electrical and optical properties of donor doped ZnS films grown by low-pressure MOCVD[J]. Cryst Growth, 1998, 86: 252.

[4]

Armstrong S, Datta P K, Miles R W. Properties of zinc sulfur selenide deposited using a close-spaced sublimation method[J]. Thin Solid Films, 2002, 403.

[5]

Shao L X, Chang K H, Hwang H L. Zinc sulfide thin films deposited by RF reactive sputtering for photovoltaic applications[J]. Appl Surf Sci, 2003, 212.

[6]

Hillie K H, Swart H C. Effects of SnO2 surface coating on the degradation of ZnS thin film phosphor[J]. Appl Surf Sci, 2007, 253: 8513.

[7]

Wu X, Lai F, Lin L. Optical inhomogeneity of ZnS films deposited by thermal evaporation[J]. Appl Surf Sci, 2008, 254: 6455.

[8]

Darenfed O, Aida M S, Hafdallah A. Substrate temperature influence on ZnS thin films prepared by ultrasonic spray[J]. Thin Solid Films, 2009, 518: 1082.

[9]

Lekiket H, Aida M S. Chemical bath deposition of nanocrystalline ZnS thin films:influence of pH on the reaction solution[J]. Mater Sci Semicond Process, 2013, 16: 1753.

[10]

Subbaiah Y P V, Prathap P, Reddy K T R. Structural, electrical and optical properties of ZnS films deposited by close-spaced evaporation[J]. Appl Surf Sci, 2006, 253: 2409.

[11]

Nasir E M. Surface morphological and structural properties of ZnS and ZnS:Al thin films[J]. International Journal of Innovative Research in Science, Engineering and Technology, 2014, 3: 8114.

[12]

Urakawa Y, Gleason K K. Tunable photoluminescence via thermally evaporated ZnS ultra thin films[J]. Journal of Coating Science and Technology, 2014, 1: 46.

[13]

Yuvaraj D, Sathyanarayanan M, Rao K N. Growth of ZnS Nanostructures in High Vacuum by Thermal Evaporation[J]. Journal of Nanoscience and Nanotechnology, 2013, 13: 1.

[14]

Xue S. Effects of thermal annealing on the optical properties of Ar ion irradiated ZnS films[J]. Ceramics Intern, 2013, 39: 6577.

[15]

Jin C, Kim H, Baek K. Effects of coating and thermal annealing on the photoluminescence properties of ZnS/ZnO onedimensional radial heterostructures[J]. Mater Sci Eng B, 2010, 170: 143.

[16]

Li B H, Zhao D X, Yao B. The growth of single cubic phase ZnS thin films on silica glass by plasma-assisted metalorganic chemical vapor deposition[J]. Thin Solid Films, 2006, 513: 114.

[17]

Berger L I. Semiconductor materials[J]. Boca Raton, FL:CRC Press, 1997.

[18]

Fang X S, Zhai T Y, Gautam U K. Recent advances in zinc sulfide nanostructures[J]. Progress in Mater Sci, 2011, 56: 175.

[19]

Malssel L I, Glang R. Handbook of thin film technology[J]. New York:McGraw Hill Book Company, 1970.

[20]

Dhanam M, Manoj P K, Prabhu R R. High-temperature conductivity in chemical bath deposited copper selenide thin films[J]. J Cryst Growth, 2005, 280: 425.

[21]

Studenikin S A, Golego N, Cocivera M. Optical and electrical properties of undoped ZnO films grown by spray pyrolysis of zinc nitrate solution[J]. J Appl Phys, 1998, 83: 2104.

[22]

Pankove I V. Optical processes in semiconductors[J]. New York:Dover Inc, 1973, 36.

[23]

Tauc J J. Amorphous and liquid semiconductors[J]. Plenum, London, 1974.

[24]

Davis E A, Mott N F. Conduction in non-crystalline systems V[J]. Philos Mag, 1970, 22: 903.

[25]

Manzor K, Vadera S R, Kumar N. Synthesis and photoluminescent properties of ZnS nanocrystals doped with copper and halogen[J]. Mater Chem Phys, 2003, 82: 718.

[26]

Urbach F. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids[J]. Phys Rev, 1953, 92: 1324.

[27]

Pramod K S, Varadan V K, Varadan V V. Optical, dielectric and fatigue properties of sol-gel-derived 2μm thick Pb(Zr0[J]. Smart Mater Struct, 2002, 11: 956.

[28]

Abdelrahman A E, Yunus W M M, Arof A K. Optical properties of tin sulphide (SnS) thin film estimated from transmission spectra[J]. J Non-Crystalline Solids, 2012, 358: 1447.

[1]

K. Mahmood, M. Asghar, N. Amin, Adnan Ali. Phase transformation from cubic ZnS to hexagonal ZnO by thermal annealing. J. Semicond., 2015, 36(3): 033001. doi: 10.1088/1674-4926/36/3/033001

[2]

Wenjian Li, Jinhuo Chen, Shuying Cheng, Yongshun Wang. Substrate temperature effects on the structural and photoelectric properties of ZnS:In films. J. Semicond., 2014, 35(2): 023001. doi: 10.1088/1674-4926/35/2/023001

[3]

Jinhuo Chen, Wenjian Li. Significant improvement of ZnS film electrical and optical performance by indium incorporation. J. Semicond., 2014, 35(9): 093003. doi: 10.1088/1674-4926/35/9/093003

[4]

M. Mehrabian, Z. Esteki, H. Shokrvash, G. Kavei. Optical and electrical properties of copper-incorporated ZnS films applicable as solar cell absorbers. J. Semicond., 2016, 37(10): 103002. doi: 10.1088/1674-4926/37/10/103002

[5]

Wang Yanshuo, Chen Nuofu, Zhang Xingwang, Yang Xiaoli, Bai Yiming, Cui Min, Wang Yu, Chen Xiaofeng, Huang Tianmao. Ag surface plasmon enhanced double-layer antireflection coatings for GaAs solar cells. J. Semicond., 2009, 30(7): 072005. doi: 10.1088/1674-4926/30/7/072005

[6]

Sunil H. Chaki, Mahesh D. Chaudhary, M. P. Deshpande. SnS thin films deposited by chemical bath deposition, dip coating and SILAR techniques. J. Semicond., 2016, 37(5): 053001. doi: 10.1088/1674-4926/37/5/053001

[7]

Huang Lirong, Huang Dexiu, Zhang Xinliang. Optimal Design of Antireflection Coating for Flat and Wideband Incoherent Optical Sources Based on a Semiconductor Optical. J. Semicond., 2006, 27(8): 1471.

[8]

Lin Guoqiang, Zeng Yiping, Wang Xiaoliang, Liu Hongxin. Effect of a Metal Buffer Layer on GaN Grown on Si(111) by Gas Source Molecular Beam Epitaxy with Ammonia. J. Semicond., 2008, 29(10): 1998.

[9]

Zheng Hong, Cheng Xiaoman, Tian Haijun, Zhao Geng. Enhanced performance of C60 organic field effect transistors using a tris(8-hydroxyquinoline) aluminum buffer layer. J. Semicond., 2011, 32(9): 094005. doi: 10.1088/1674-4926/32/9/094005

[10]

Xia Guo, Qiaoli Liu, Huijun Tian, Ben Li, Hongyi Zhou, Chong Li, Anqi Hu, Xiaoying He. Optimization of broadband omnidirectional antireflection coatings for solar cells. J. Semicond., 2019, 40(3): 032702. doi: 10.1088/1674-4926/40/3/032702

[11]

Xiaoyan Dai, Chengwu Shi, Yanru Zhang, Ni Wu. Hydrolysis preparation of the compact TiO2 layer using metastable TiCl4 isopropanol/water solution for inorganic-organic hybrid heterojunction perovskite solar cells. J. Semicond., 2015, 36(7): 074003. doi: 10.1088/1674-4926/36/7/074003

[12]

K S Urmila, T A Namitha, J Rajani, R R Philip, B Pradeep. Optoelectronic properties and Seebeck coefficient in SnSe thin films. J. Semicond., 2016, 37(9): 093002. doi: 10.1088/1674-4926/37/9/093002

[13]

Zhang Xuhui, Tao Chunlan, Zhang Fujia, Liu Yiyang, Zhang Haoli. Dissolving Pentacene and Characterizing Pantecene Thin Films Fabricated from the Solution. J. Semicond., 2006, 27(10): 1771.

[14]

S. Hariech, M. S. Aida, J. Bougdira, M. Belmahi, G. Medjahdi, D. Genève, N. Attaf, H. Rinnert. Cadmium sulfide thin films growth by chemical bath deposition. J. Semicond., 2018, 39(3): 034004. doi: 10.1088/1674-4926/39/3/034004

[15]

R. M. Hodlur, M. K. Rabinal. Influence of pH of spray solution on optoelectronic properties of cadmium oxide thin films. J. Semicond., 2015, 36(3): 033003. doi: 10.1088/1674-4926/36/3/033003

[16]

Jun Zhao, Guangxing Liang, Yang Zeng, Ping Fan, Juguang Hu, Jingting Luo, Dongping Zhang. The influence of sequence of precursor films on CZTSe thin films prepared by ion-beam sputtering deposition. J. Semicond., 2017, 38(2): 023002. doi: 10.1088/1674-4926/38/2/023002

[17]

Kiran Diwate, Amit Pawbake, Sachin Rondiya, Rupali Kulkarni, Ravi Waykar, Ashok Jadhavar, Avinash Rokade, Adinath Funde, Kakasaheb Mohite, Manish Shinde, Habib Pathan, Rupesh Devan, Sandesh Jadkar. Substrate temperature dependent studies on properties of chemical spray pyrolysis deposited CdS thin films for solar cell applications. J. Semicond., 2017, 38(2): 023001. doi: 10.1088/1674-4926/38/2/023001

[18]

Yacine Aoun, Boubaker Benhaoua, Brahim Gasmi, Said Benramache. Structural, optical and electrical properties of zinc oxide thin films deposited by a spray pyrolysis technique. J. Semicond., 2015, 36(1): 013002. doi: 10.1088/1674-4926/36/1/013002

[19]

R. Suresh, V. Ponnuswamy, J. Chandrasekaran, D. Manoharan, R. Mariappan. The effect of annealing temperature and the characteristics of p-n junction diodes based on sprayed polyaniline/ZnO thin films. J. Semicond., 2013, 34(8): 083001. doi: 10.1088/1674-4926/34/8/083001

[20]

Hassiba Rahal, Rafiaa Kihal, Abed Mohamed Affoune, Mokhtar Ghers, Faycal Djazi. Electrodeposition and characterization of ZnO thin films using sodium thiosulfate as an additive for photovoltaic solar cells. J. Semicond., 2017, 38(5): 053002. doi: 10.1088/1674-4926/38/5/053002

Search

Advanced Search >>

GET CITATION

K. Benyahia, A. Benhaya, M. S. Aida. ZnS thin films deposition by thermal evaporation for photovoltaic applications[J]. J. Semicond., 2015, 36(10): 103001. doi: 10.1088/1674-4926/36/10/103001.

Export: BibTex EndNote

Article Metrics

Article views: 725 Times PDF downloads: 15 Times Cited by: 0 Times

History

Manuscript received: 22 March 2015 Manuscript revised: Online: Published: 01 October 2015

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误