J. Semicond. > Volume 36 > Issue 12 > Article Number: 121001

Progress in complementary metal-oxide-semiconductor silicon photonics and optoelectronic integrated circuits

Hongda Chen 1, , , Zan Zhang 1, , Beiju Huang 1, , Luhong Mao 2, and Zanyun Zhang 3,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: Silicon photonics is an emerging competitive solution for next-generation scalable data communications in different application areas as high-speed data communication is constrained by electrical interconnects. Optical interconnects based on silicon photonics can be used in intra/inter-chip interconnects, board-to-board interconnects, short-reach communications in datacenters, supercomputers and long-haul optical transmissions. In this paper, we present an overview of recent progress in silicon optoelectronic devices and optoelectronic integrated circuits(OEICs) based on a complementary metal-oxide-semiconductor-compatible process, and focus on our research contributions. The silicon optoelectronic devices and OEICs show good characteristics, which are expected to benefit several application domains, including communication, sensing, computing and nonlinear systems.

Key words: silicon photonicssilicon LEDgrating couplersilicon modulatoroptoelectronic integrated circuits

Abstract: Silicon photonics is an emerging competitive solution for next-generation scalable data communications in different application areas as high-speed data communication is constrained by electrical interconnects. Optical interconnects based on silicon photonics can be used in intra/inter-chip interconnects, board-to-board interconnects, short-reach communications in datacenters, supercomputers and long-haul optical transmissions. In this paper, we present an overview of recent progress in silicon optoelectronic devices and optoelectronic integrated circuits(OEICs) based on a complementary metal-oxide-semiconductor-compatible process, and focus on our research contributions. The silicon optoelectronic devices and OEICs show good characteristics, which are expected to benefit several application domains, including communication, sensing, computing and nonlinear systems.

Key words: silicon photonicssilicon LEDgrating couplersilicon modulatoroptoelectronic integrated circuits



References:

[1]

Ho R, Mai K W, Horowitz M A. The future of wires[J]. Proc IEEE, 2001, 89(4): 490.

[2]

Davis J A, Venkatesan R, Kaloyeros A. Interconnect limits on gigascale integration(GSI) in the 21st century[J]. Proc IEEE, 2001, 89(3): 305.

[3]

Meindl J D. Interconnect opportunities for gigascale integration[J]. IEEE Micro, 2003, 23(3): 28.

[4]

Haurylau M, Chen G, Chen H. On-chip optical interconnect roadmap:challenges and critical directions[J]. IEEE J Sel Topics Quantum Electron, 2006, 12(6): 1699.

[5]

Miller D A. Device requirements for optical interconnects to silicon chips[J]. Proc IEEE, 2009, 97(7): 1166.

[6]

Jalali B, Fathpour S. Silicon photonics[J]. J Lightwave Technol, 2006, 24(12): 4600.

[7]

Lipson M. Guiding, modulating, and emitting light on silicon-challenges and opportunities[J]. IEEE J Lightwave Technol, 2005, 23(12): 4222.

[8]

Hochberg M, Baehr-Jones T. Towards fabless silicon photonics[J]. Nat Photonics, 2010, 4(8): 492.

[9]

Yu J, Wang Q. Recent advancements in Si-based photonic materials and devices[J]. Chinese Journal of Semiconductors, 2007, 28.

[10]

Subbaraman H, Xu X, Hosseini A. Recent advances in silicon-based passive and active optical interconnects[J]. Opt Express, 2015, 23(3): 2487.

[11]

Zhang F, Zhou P, Chen Q. An electro-optic directed decoder based on two cascaded microring resonators[J]. Journal of Semiconductors, 2014, 35(10): 104011.

[12]

Reed G T, Kewell A K. Erbium-doped silicon and porous silicon for optoelectronics[J]. Mater Sci Eng B, 1996, 40(2): 207.

[13]

Lu Z H, Lockwood D J, Baribeau J M. Quantum confinement and light emission in SiO2/Si superlattices[J]. Nature, 1995, 378: 258.

[14]

Zheng B, Michel J, Ren F Y G. Room-temperature sharp line electroluminescence at λ=1.54 μm from an erbium-doped, silicon light-emitting diode[J]. Appl Phys Lett, 1994, 64(21): 2842.

[15]

Komoda T, Kelly J, Cristiano F. Visible photoluminescence at room temperature from microcrystalline silicon precipitates in SiO2 formed by ion implantation[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1995, 96(1): 387.

[16]

Rong H, Jones R, Liu A. A continuous-wave Raman silicon laser[J]. Nature, 2005, 433(7027): 725.

[17]

Snyman L W, Du Plessis M, Seevinck E. An efficient low voltage, high frequency silicon CMOS light emitting device and electro-optical interface[J]. IEEE Electron Device Lett, 1999, 20(12): 614.

[18]

Du Plessis M, Aharoni H, Snyman L W. Two-and multi-terminal CMOS/BiCMOS Si LED's[J]. Opt Mater, 2005, 27(5): 1059.

[19]

Snyman L W, Aharoni H, du Plessis M. Increased efficiency of silicon light-emitting diodes in a standard 1.2-μm silicon complementary metal oxide semiconductor technology.[J]. Opt Eng, 1998, 37(7): 2133.

[20]

Du Plessis M, Aharoni H, Snyman L W. Silicon LEDs fabricated in standard VLSI technology as components for all silicon monolithic integrated optoelectronic systems[J]. IEEE J Sel Topics Quantum Electron, 2002, 8(6): 1412.

[21]

Morschbach M, Oehme M, Kasper E. Visible light emission by a reverse-biased integrated silicon diode[J]. IEEE Trans Electron Devices, 2007, 54(5): 1091.

[22]

Snyman L W, Aharoni H, Du Plessis M. A dependency of quantum efficiency of silicon CMOS n+pp+ LEDs on current density[J]. IEEE Photonics Technol Lett, 2005, 17(10): 2041.

[23]

Xie R, Mao L, Guo W. High optical power density forward-biased silicon LEDs in standard CMOS process[J]. IEEE Photonics Technol Lett, 2015, 27(2): 121.

[24]

Wang W, Huang B, Dong Z. A low-voltage silicon light emitting device in standard salicide CMOS technology[J]. Chin Phys Lett, 2010, 27(4): 048501.

[25]

Wang W, Huang B, Dong Z. Multifunctional silicon-based light emitting device in standard complementary metal-oxide-semiconductor technology[J]. Chinese Physics B, 2011, 20(1): 018503.

[26]

Huang B, Wang W, Dong Z. Schottky barrier light emitting diode in standard CMOS technology[J]. 8th IEEE International Conference on Group IV Photonics(GFP), 2011: 296.

[27]

Roelkens G, Vermeulen D, Selvaraja S. Grating-based optical fiber interfaces for silicon-on-insulator photonic integrated circuits[J]. IEEE J Sel Topics Quantum Electron, 2011, 17(3): 571.

[28]

Vermeulen D, Selvaraja S, Verheyen P. High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform[J]. Opt Express, 2010, 18(17): 18278.

[29]

Mekis A, Gloeckner S, Masini G. A grating-coupler-enabled CMOS photonics platform[J]. IEEE J Sel Topics Quantum Electron, 2011, 17(3): 597.

[30]

Snyder B, O'Brien P. Packaging process for grating-coupled silicon photonic waveguides using angle-polished fibers[J]. IEEE Trans Compon Packag Manuf Tech, 2013, 3(6): 954.

[31]

Doylend J K, Knights A P. The evolution of silicon photonics as an enabling technology for optical interconnection[J]. Laser & Photonics Reviews, 2012, 6(4): 504.

[32]

Zhang Z, Zhang Z, Huang B. CMOS-compatible vertical grating coupler with quasi Mach-Zehnder characteristics[J]. IEEE Photonics Technol Lett, 2013, 25(3): 224.

[33]

Reed G T, Mashanovich G, Gardes F Y. Silicon optical modulators[J]. Nature Photonics, 2010, 4(8): 518.

[34]

Thomson D J, Gardes F Y, Hu Y. High contrast 40 Gbit/s optical modulation in silicon[J]. Opt Express, 2011, 19(12): 11507.

[35]

Chen H, Ding J, Yang L. 12.5 Gb/s carrier-injection silicon Mach-Zehnder optical modulator.[J]. Journal of Semiconductors, 2012, 33(11): 114005.

[36]

Zhao Y, Wang W, Shao H. Influence of doping position on the extinction ratio of Mach-Zehnder-interference based silicon optical modulators[J]. Journal of Semiconductors, 2012, 33(1): 014009.

[37]

Xiao X, Xu H, Li X. High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization[J]. Opt Express, 2013, 21(4): 4116.

[38]

Brimont A, Thomson D J, Gardes F Y. High-contrast 40 Gb/s operation of a 500 μm long silicon carrier-depletion slow wave modulator[J]. Opt Lett, 2012, 37(17): 3504.

[39]

Rasigade G, Marris-Morini D, Vivien L. Performance evolutions of carrier depletion silicon optical modulators:from PN to PIPIN diodes[J]. IEEE J Sel Topics Quantum Electron, 2010, 16(1): 179.

[40]

Yu H, Pantouvaki M, Van Campenhout J. Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators[J]. Opt Express, 2012, 20(12): 12926.

[41]

Yu H, Bogaerts W, De Keersgieter A. Optimization of ion implantation condition for depletion-type silicon optical modulators[J]. IEEE J Quantum Electron, 2010, 46(12): 1763.

[42]

Tu X, Liow T Y, Song J. Fabrication of low loss and high speed silicon optical modulator using doping compensation method[J]. Opt Express, 2011, 19(19): 18029.

[43]

Yu H, Bogaerts W. An equivalent circuit model of the traveling wave electrode for carrier-depletion-based silicon optical modulators[J]. Journal of Lightwave Technology, 2012, 30(11): 1602.

[44]

Almeida V R, Panepucci R R, Lipson M. Nanotaper for compact mode conversion[J]. Opt Lett, 2003, 28(15): 1302.

[45]

Pu M, Liu L, Ou H. Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide[J]. Opt Commun, 2010, 283(19): 3678.

[46]

Zhang Z, Huang B, Zhang Z. Misalignment-tolerant silicon optical modulator with surface-normal optical interface[J]. IEEE Photonics Technol Lett, 2015, 27(10): 1052.

[47]

Michel J, Liu J, Kimerling L C. High-performance Ge-on-Si photodetectors[J]. Nature Photonics, 2010, 4(8): 527.

[48]

Liao S, Feng N N, Feng D. 36 GHz submicron silicon waveguide germanium photodetector[J]. Opt Express, 2011, 19(11): 10967.

[49]

Vivien L, Osmond J, Fédéli J M. 42 GHz pin germanium photodetector integrated in a silicon-on-insulator waveguide[J]. Opt Express, 2009, 17(8): 6252.

[50]

Assefa S, Xia F, Bedell S W. CMOS-integrated high-speed MSM germanium waveguide photodetector[J]. Opt Express, 2010, 18(5): 4986.

[51]

Liu J, Cannon D D, Wada K. Tensile strained Ge pin photodetectors on Si platform for C and L band telecommunications[J]. Appl Phys Lett, 2005, 87(1): 011110.

[52]

Pinguet T, Analui B, Balmater E. Monolithically integrated high-speed CMOS photonic transceivers[J]. 5th IEEE International Conference on Group IV Photonics, 2008: 362.

[53]

Mekis A, Abdalla S, De Dobbelaere P M. Scaling CMOS photonics transceivers beyond 100 Gb/s[J]. SPIE OPTO, 2012: 82650A.

[54]

Assefa S, Shank S, Green W. A 90 nm CMOS integrated nano-photonics technology for 25 Gbps WDM optical communications applications[J]. IEEE International Electron Devices Meeting(IEDM), 2012: 31.

[55]

Assefa S, Green W M, Rylyakov A. Monolithic integration of silicon nanophotonics with CMOS[J]. IEEE Photonics Conference(IPC), 2012: 626.

[56]

Offrein B J. Silicon photonics for the data center[J]. Optical Fiber Communication Conference, 2015.

[57]

Georgas M, Orcutt J, Ram R J. A monolithically-integrated optical receiver in standard 45-nm SOI[J]. IEEE J Solid-State Circuits, 2012, 47(7): 1693.

[58]

Buckwalter J F, Zheng X, Li G. A monolithic 25-Gb/s transceiver with photonic ring modulators and Ge detectors in a 130-nm CMOS SOI process[J]. IEEE J Solid-State Circuits, 2012, 47(6): 1309.

[59]

Zhang Z, Huang B, Zhang Z. Monolithic integrated silicon photonic interconnect with perfectly vertical coupling optical interface[J]. IEEE Photonics Journal, 2013, 5(5): 6601711.

[60]

Zhang Z, Huang B, Zhang Z. Bidirectional grating coupler based optical modulator for low-loss Integration and low-cost fiber packaging[J]. Opt Express, 2013, 21(12): 14202.

[61]

Koh R. Buried layer engineering to reduce the drain-induced barrier lowering of sub-0.05 μm SOI-MOSFET.[J]. Jpn J Appl Phys, 1999, 38(4s): 2294.

[62]

Su L T, Chung J E, Antoniadis D A. Measurement and modeling of self-heating in SOI nMOSFET's[J]. IEEE Trans Electron Devices, 1994, 41(1): 69.

[63]

Huang B, Zhang X, Wang W. CMOS monolithic optoelectronic integrated circuit for on-chip optical interconnection[J]. Opt Commun, 2011, 284(16): 3924.

[64]

Joblot S, Bar P, Sibuet H. Copper pillar interconnect capability for mmwave applications in 3D integration technology[J]. Microelectron Eng, 2013, 107: 72.

[65]

Boeuf F, Cremer S, Temporiti E. Recent progress in silicon photonics R &D and manufacturing on 300 mm wafer platform[J]. Opt Fiber Commun Conference, 2015.

[66]

Rakowski M, Pantouvaki M, De Heyn P. A 4×20 Gb/s WDM ring-based hybrid CMOS silicon photonics transceiver[J]. IEEE International Solid-State Circuits Conference(ISSCC), 2015: 1.

[67]

Verheyen P P, Pantouvaki M, Van Campenhout J. Highly uniform 25 Gb/s Si photonics platform for high-density, low-power WDM optical interconnects[J]. Integrated Photonics Research, Silicon and Nanophotonics, 2014.

[68]

Young, Mohammed, Liao, X. Optical I/O technology for tera-scale computing[J]. IEEE J Solid-State Circuits, 2010, 45(1): 235.

[69]

Lee Y H D, Lipson M. Backend monolithic integration of passive optical devices on 90 nm bulk CMOS chip[J]. Conference on Lasers and Electro-Optics, 2012: 1.

[70]

Lee Y H D, Lipson M. Back-end deposited silicon photonics for monolithic integration on CMOS[J]. IEEE J Sel Topics Quantum Electron, 2013, 19(2): 409.

[71]

Orcutt J S, Ram R J, Stojanoviæ V. Integration of silicon photonics into electronic processes[J]. SPIE OPTO, 2013: 86290F.

[72]

Young I A, Block B, Reshotko M. Integration of nano-photonic devices for CMOS chip-to-chip optical I/O[J]. Conference on Lasers and Electro-Optics(CLEO) and Quantum Electronics and Laser Science Conference(QELS), 2010: 1.

[73]

Sedky S, Witvrouw A, Bender H. Experimental determination of the maximum post-process annealing temperature for standard CMOS wafers[J]. IEEE Trans Electron Devices, 2001, 48(2): 377.

[74]

Zhang Z, Huang B, Zhang X. Monolithic integration of Si3N4 microring filters with bulk CMOS IC through post-backend process[J]. IEEE Photonics Technol Lett, 2015, 25(14): 1543.

[75]

Vlasov Y A. Silicon integrated nanophotonics:from fundamental science to manufacturable technology(Presentation Video)[J]. SPIE OPTO, 2015: 93671X.

[1]

Ho R, Mai K W, Horowitz M A. The future of wires[J]. Proc IEEE, 2001, 89(4): 490.

[2]

Davis J A, Venkatesan R, Kaloyeros A. Interconnect limits on gigascale integration(GSI) in the 21st century[J]. Proc IEEE, 2001, 89(3): 305.

[3]

Meindl J D. Interconnect opportunities for gigascale integration[J]. IEEE Micro, 2003, 23(3): 28.

[4]

Haurylau M, Chen G, Chen H. On-chip optical interconnect roadmap:challenges and critical directions[J]. IEEE J Sel Topics Quantum Electron, 2006, 12(6): 1699.

[5]

Miller D A. Device requirements for optical interconnects to silicon chips[J]. Proc IEEE, 2009, 97(7): 1166.

[6]

Jalali B, Fathpour S. Silicon photonics[J]. J Lightwave Technol, 2006, 24(12): 4600.

[7]

Lipson M. Guiding, modulating, and emitting light on silicon-challenges and opportunities[J]. IEEE J Lightwave Technol, 2005, 23(12): 4222.

[8]

Hochberg M, Baehr-Jones T. Towards fabless silicon photonics[J]. Nat Photonics, 2010, 4(8): 492.

[9]

Yu J, Wang Q. Recent advancements in Si-based photonic materials and devices[J]. Chinese Journal of Semiconductors, 2007, 28.

[10]

Subbaraman H, Xu X, Hosseini A. Recent advances in silicon-based passive and active optical interconnects[J]. Opt Express, 2015, 23(3): 2487.

[11]

Zhang F, Zhou P, Chen Q. An electro-optic directed decoder based on two cascaded microring resonators[J]. Journal of Semiconductors, 2014, 35(10): 104011.

[12]

Reed G T, Kewell A K. Erbium-doped silicon and porous silicon for optoelectronics[J]. Mater Sci Eng B, 1996, 40(2): 207.

[13]

Lu Z H, Lockwood D J, Baribeau J M. Quantum confinement and light emission in SiO2/Si superlattices[J]. Nature, 1995, 378: 258.

[14]

Zheng B, Michel J, Ren F Y G. Room-temperature sharp line electroluminescence at λ=1.54 μm from an erbium-doped, silicon light-emitting diode[J]. Appl Phys Lett, 1994, 64(21): 2842.

[15]

Komoda T, Kelly J, Cristiano F. Visible photoluminescence at room temperature from microcrystalline silicon precipitates in SiO2 formed by ion implantation[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1995, 96(1): 387.

[16]

Rong H, Jones R, Liu A. A continuous-wave Raman silicon laser[J]. Nature, 2005, 433(7027): 725.

[17]

Snyman L W, Du Plessis M, Seevinck E. An efficient low voltage, high frequency silicon CMOS light emitting device and electro-optical interface[J]. IEEE Electron Device Lett, 1999, 20(12): 614.

[18]

Du Plessis M, Aharoni H, Snyman L W. Two-and multi-terminal CMOS/BiCMOS Si LED's[J]. Opt Mater, 2005, 27(5): 1059.

[19]

Snyman L W, Aharoni H, du Plessis M. Increased efficiency of silicon light-emitting diodes in a standard 1.2-μm silicon complementary metal oxide semiconductor technology.[J]. Opt Eng, 1998, 37(7): 2133.

[20]

Du Plessis M, Aharoni H, Snyman L W. Silicon LEDs fabricated in standard VLSI technology as components for all silicon monolithic integrated optoelectronic systems[J]. IEEE J Sel Topics Quantum Electron, 2002, 8(6): 1412.

[21]

Morschbach M, Oehme M, Kasper E. Visible light emission by a reverse-biased integrated silicon diode[J]. IEEE Trans Electron Devices, 2007, 54(5): 1091.

[22]

Snyman L W, Aharoni H, Du Plessis M. A dependency of quantum efficiency of silicon CMOS n+pp+ LEDs on current density[J]. IEEE Photonics Technol Lett, 2005, 17(10): 2041.

[23]

Xie R, Mao L, Guo W. High optical power density forward-biased silicon LEDs in standard CMOS process[J]. IEEE Photonics Technol Lett, 2015, 27(2): 121.

[24]

Wang W, Huang B, Dong Z. A low-voltage silicon light emitting device in standard salicide CMOS technology[J]. Chin Phys Lett, 2010, 27(4): 048501.

[25]

Wang W, Huang B, Dong Z. Multifunctional silicon-based light emitting device in standard complementary metal-oxide-semiconductor technology[J]. Chinese Physics B, 2011, 20(1): 018503.

[26]

Huang B, Wang W, Dong Z. Schottky barrier light emitting diode in standard CMOS technology[J]. 8th IEEE International Conference on Group IV Photonics(GFP), 2011: 296.

[27]

Roelkens G, Vermeulen D, Selvaraja S. Grating-based optical fiber interfaces for silicon-on-insulator photonic integrated circuits[J]. IEEE J Sel Topics Quantum Electron, 2011, 17(3): 571.

[28]

Vermeulen D, Selvaraja S, Verheyen P. High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform[J]. Opt Express, 2010, 18(17): 18278.

[29]

Mekis A, Gloeckner S, Masini G. A grating-coupler-enabled CMOS photonics platform[J]. IEEE J Sel Topics Quantum Electron, 2011, 17(3): 597.

[30]

Snyder B, O'Brien P. Packaging process for grating-coupled silicon photonic waveguides using angle-polished fibers[J]. IEEE Trans Compon Packag Manuf Tech, 2013, 3(6): 954.

[31]

Doylend J K, Knights A P. The evolution of silicon photonics as an enabling technology for optical interconnection[J]. Laser & Photonics Reviews, 2012, 6(4): 504.

[32]

Zhang Z, Zhang Z, Huang B. CMOS-compatible vertical grating coupler with quasi Mach-Zehnder characteristics[J]. IEEE Photonics Technol Lett, 2013, 25(3): 224.

[33]

Reed G T, Mashanovich G, Gardes F Y. Silicon optical modulators[J]. Nature Photonics, 2010, 4(8): 518.

[34]

Thomson D J, Gardes F Y, Hu Y. High contrast 40 Gbit/s optical modulation in silicon[J]. Opt Express, 2011, 19(12): 11507.

[35]

Chen H, Ding J, Yang L. 12.5 Gb/s carrier-injection silicon Mach-Zehnder optical modulator.[J]. Journal of Semiconductors, 2012, 33(11): 114005.

[36]

Zhao Y, Wang W, Shao H. Influence of doping position on the extinction ratio of Mach-Zehnder-interference based silicon optical modulators[J]. Journal of Semiconductors, 2012, 33(1): 014009.

[37]

Xiao X, Xu H, Li X. High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization[J]. Opt Express, 2013, 21(4): 4116.

[38]

Brimont A, Thomson D J, Gardes F Y. High-contrast 40 Gb/s operation of a 500 μm long silicon carrier-depletion slow wave modulator[J]. Opt Lett, 2012, 37(17): 3504.

[39]

Rasigade G, Marris-Morini D, Vivien L. Performance evolutions of carrier depletion silicon optical modulators:from PN to PIPIN diodes[J]. IEEE J Sel Topics Quantum Electron, 2010, 16(1): 179.

[40]

Yu H, Pantouvaki M, Van Campenhout J. Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators[J]. Opt Express, 2012, 20(12): 12926.

[41]

Yu H, Bogaerts W, De Keersgieter A. Optimization of ion implantation condition for depletion-type silicon optical modulators[J]. IEEE J Quantum Electron, 2010, 46(12): 1763.

[42]

Tu X, Liow T Y, Song J. Fabrication of low loss and high speed silicon optical modulator using doping compensation method[J]. Opt Express, 2011, 19(19): 18029.

[43]

Yu H, Bogaerts W. An equivalent circuit model of the traveling wave electrode for carrier-depletion-based silicon optical modulators[J]. Journal of Lightwave Technology, 2012, 30(11): 1602.

[44]

Almeida V R, Panepucci R R, Lipson M. Nanotaper for compact mode conversion[J]. Opt Lett, 2003, 28(15): 1302.

[45]

Pu M, Liu L, Ou H. Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide[J]. Opt Commun, 2010, 283(19): 3678.

[46]

Zhang Z, Huang B, Zhang Z. Misalignment-tolerant silicon optical modulator with surface-normal optical interface[J]. IEEE Photonics Technol Lett, 2015, 27(10): 1052.

[47]

Michel J, Liu J, Kimerling L C. High-performance Ge-on-Si photodetectors[J]. Nature Photonics, 2010, 4(8): 527.

[48]

Liao S, Feng N N, Feng D. 36 GHz submicron silicon waveguide germanium photodetector[J]. Opt Express, 2011, 19(11): 10967.

[49]

Vivien L, Osmond J, Fédéli J M. 42 GHz pin germanium photodetector integrated in a silicon-on-insulator waveguide[J]. Opt Express, 2009, 17(8): 6252.

[50]

Assefa S, Xia F, Bedell S W. CMOS-integrated high-speed MSM germanium waveguide photodetector[J]. Opt Express, 2010, 18(5): 4986.

[51]

Liu J, Cannon D D, Wada K. Tensile strained Ge pin photodetectors on Si platform for C and L band telecommunications[J]. Appl Phys Lett, 2005, 87(1): 011110.

[52]

Pinguet T, Analui B, Balmater E. Monolithically integrated high-speed CMOS photonic transceivers[J]. 5th IEEE International Conference on Group IV Photonics, 2008: 362.

[53]

Mekis A, Abdalla S, De Dobbelaere P M. Scaling CMOS photonics transceivers beyond 100 Gb/s[J]. SPIE OPTO, 2012: 82650A.

[54]

Assefa S, Shank S, Green W. A 90 nm CMOS integrated nano-photonics technology for 25 Gbps WDM optical communications applications[J]. IEEE International Electron Devices Meeting(IEDM), 2012: 31.

[55]

Assefa S, Green W M, Rylyakov A. Monolithic integration of silicon nanophotonics with CMOS[J]. IEEE Photonics Conference(IPC), 2012: 626.

[56]

Offrein B J. Silicon photonics for the data center[J]. Optical Fiber Communication Conference, 2015.

[57]

Georgas M, Orcutt J, Ram R J. A monolithically-integrated optical receiver in standard 45-nm SOI[J]. IEEE J Solid-State Circuits, 2012, 47(7): 1693.

[58]

Buckwalter J F, Zheng X, Li G. A monolithic 25-Gb/s transceiver with photonic ring modulators and Ge detectors in a 130-nm CMOS SOI process[J]. IEEE J Solid-State Circuits, 2012, 47(6): 1309.

[59]

Zhang Z, Huang B, Zhang Z. Monolithic integrated silicon photonic interconnect with perfectly vertical coupling optical interface[J]. IEEE Photonics Journal, 2013, 5(5): 6601711.

[60]

Zhang Z, Huang B, Zhang Z. Bidirectional grating coupler based optical modulator for low-loss Integration and low-cost fiber packaging[J]. Opt Express, 2013, 21(12): 14202.

[61]

Koh R. Buried layer engineering to reduce the drain-induced barrier lowering of sub-0.05 μm SOI-MOSFET.[J]. Jpn J Appl Phys, 1999, 38(4s): 2294.

[62]

Su L T, Chung J E, Antoniadis D A. Measurement and modeling of self-heating in SOI nMOSFET's[J]. IEEE Trans Electron Devices, 1994, 41(1): 69.

[63]

Huang B, Zhang X, Wang W. CMOS monolithic optoelectronic integrated circuit for on-chip optical interconnection[J]. Opt Commun, 2011, 284(16): 3924.

[64]

Joblot S, Bar P, Sibuet H. Copper pillar interconnect capability for mmwave applications in 3D integration technology[J]. Microelectron Eng, 2013, 107: 72.

[65]

Boeuf F, Cremer S, Temporiti E. Recent progress in silicon photonics R &D and manufacturing on 300 mm wafer platform[J]. Opt Fiber Commun Conference, 2015.

[66]

Rakowski M, Pantouvaki M, De Heyn P. A 4×20 Gb/s WDM ring-based hybrid CMOS silicon photonics transceiver[J]. IEEE International Solid-State Circuits Conference(ISSCC), 2015: 1.

[67]

Verheyen P P, Pantouvaki M, Van Campenhout J. Highly uniform 25 Gb/s Si photonics platform for high-density, low-power WDM optical interconnects[J]. Integrated Photonics Research, Silicon and Nanophotonics, 2014.

[68]

Young, Mohammed, Liao, X. Optical I/O technology for tera-scale computing[J]. IEEE J Solid-State Circuits, 2010, 45(1): 235.

[69]

Lee Y H D, Lipson M. Backend monolithic integration of passive optical devices on 90 nm bulk CMOS chip[J]. Conference on Lasers and Electro-Optics, 2012: 1.

[70]

Lee Y H D, Lipson M. Back-end deposited silicon photonics for monolithic integration on CMOS[J]. IEEE J Sel Topics Quantum Electron, 2013, 19(2): 409.

[71]

Orcutt J S, Ram R J, Stojanoviæ V. Integration of silicon photonics into electronic processes[J]. SPIE OPTO, 2013: 86290F.

[72]

Young I A, Block B, Reshotko M. Integration of nano-photonic devices for CMOS chip-to-chip optical I/O[J]. Conference on Lasers and Electro-Optics(CLEO) and Quantum Electronics and Laser Science Conference(QELS), 2010: 1.

[73]

Sedky S, Witvrouw A, Bender H. Experimental determination of the maximum post-process annealing temperature for standard CMOS wafers[J]. IEEE Trans Electron Devices, 2001, 48(2): 377.

[74]

Zhang Z, Huang B, Zhang X. Monolithic integration of Si3N4 microring filters with bulk CMOS IC through post-backend process[J]. IEEE Photonics Technol Lett, 2015, 25(14): 1543.

[75]

Vlasov Y A. Silicon integrated nanophotonics:from fundamental science to manufacturable technology(Presentation Video)[J]. SPIE OPTO, 2015: 93671X.

[1]

Xingheng Xia, Weijing Wu, Xiaofeng Song, Guanming Li, Lei Zhou, Lirong Zhang, Miao Xu, Lei Wang, Junbiao Peng. High-speed low-power voltage-programmed driving scheme for AMOLED displays. J. Semicond., 2015, 36(12): 125005. doi: 10.1088/1674-4926/36/12/125005

[2]

Jiao Hong, Yuling Liu, Baoguo Zhang, Xinhuan Niu, Liying Han. A new kind of chelating agent with low pH value applied in the TSV CMP slurry. J. Semicond., 2015, 36(12): 126001. doi: 10.1088/1674-4926/36/12/126001

[3]

Rongrui Liu, Yubing Wang, Dongdong Yin, Han Ye, Xiaohong Yang, Qin Han. A high-efficiency grating coupler between single-mode fiber and silicon-on-insulator waveguide. J. Semicond., 2017, 38(5): 054007. doi: 10.1088/1674-4926/38/5/054007

[4]

Qin Ge, Hongqi Tao, Xuming Yu. A 1.8-3 GHz-band high efficiency GaAs pHEMT power amplifier MMIC. J. Semicond., 2015, 36(12): 125003. doi: 10.1088/1674-4926/36/12/125003

[5]

H. Bendjedidi, A. Attaf, H. Saidi, M. S. Aida, S. Semmari, A. Bouhdjar, Y. Benkhetta. Properties of n-type SnO2 semiconductor prepared by spray ultrasonic technique for photovoltaic applications. J. Semicond., 2015, 36(12): 123002. doi: 10.1088/1674-4926/36/12/123002

[6]

Ke Liu, Zhankun Du, Li Shao, Xiao Ma. A trimming technique for capacitive SAR ADC as sensor interface. J. Semicond., 2015, 36(12): 125004. doi: 10.1088/1674-4926/36/12/125004

[7]

Shaohua Jia, Yuling Liu, Chenwei Wang, Chenqi Yan. Influence of oxidant passivation on controlling dishing in alkaline chemical mechanical planarization. J. Semicond., 2015, 36(12): 126002. doi: 10.1088/1674-4926/36/12/126002

[8]

Zhao Yong, Wang Wanjun, Shao Haifeng, Yang Jianyi, Wang Minghua, Jiang Xiaoqing. Influence of doping position on the extinction ratio of Mach-Zehnder-interference based silicon optical modulators. J. Semicond., 2012, 33(1): 014009. doi: 10.1088/1674-4926/33/1/014009

[9]

Shujie Pan, Victoria Cao, Mengya Liao, Ying Lu, Zizhuo Liu, Mingchu Tang, Siming Chen, Alwyn Seeds, Huiyun Liu. Recent progress in epitaxial growth of III–V quantum-dot lasers on silicon substrate. J. Semicond., 2019, 40(10): 101302. doi: 10.1088/1674-4926/40/10/101302

[10]

Yunchou Zhao, Hao Jia, Jianfeng Ding, Lei Zhang, Xin Fu, Lin Yang. Five-port silicon optical router based on Mach-Zehnder optical switches for photonic networks-on-chip. J. Semicond., 2016, 37(11): 114008. doi: 10.1088/1674-4926/37/11/114008

[11]

Xuhan Guo, An He, Yikai Su. Recent advances of heterogeneously integrated III–V laser on Si. J. Semicond., 2019, 40(10): 101304. doi: 10.1088/1674-4926/40/10/101304

[12]

Yu Zhou, Xinxing Li, Renbing Tan, Wei Xue, Yongdan Huang, Shitao Lou, Baoshun Zhang, Hua Qin. Extraction of terahertz emission from a grating-coupled high-electron-mobility transistor. J. Semicond., 2013, 34(2): 022002. doi: 10.1088/1674-4926/34/2/022002

[13]

Xiaoxin Wang, Jifeng Liu. Emerging technologies in Si active photonics. J. Semicond., 2018, 39(6): 061001. doi: 10.1088/1674-4926/39/6/061001

[14]

Chen Yuan, Jincheng Dai, Hao Jia, Jianfeng Ding, Lei Zhang, Xin Fu, Lin Yang. Design of a C-band polarization rotator-splitter based on a mode-evolution structure and an asymmetric directional coupler. J. Semicond., 2018, 39(12): 124008. doi: 10.1088/1674-4926/39/12/124008

[15]

Daquan Yang, Xiao Liu, Xiaogang Li, Bing Duan, Aiqiang Wang, Yunfeng Xiao. Photoic crystal nanobeam cavity devices for on-chip integrated silicon photonics. J. Semicond., 2020, 41(0): -1.

[16]

Xiaogang Tong, Jun Liu, Chenyang Xue. High-Q micro-ring resonators and grating couplers for silicon-on-insulator integrated photonic circuits. J. Semicond., 2013, 34(8): 085006. doi: 10.1088/1674-4926/34/8/085006

[17]

Wenqi Wei, Qi Feng, Zihao Wang, Ting Wang, Jianjun Zhang. Perspective: optically-pumped III–V quantum dot microcavity lasers via CMOS compatible patterned Si (001) substrates. J. Semicond., 2019, 40(10): 101303. doi: 10.1088/1674-4926/40/10/101303

[18]

Xinlun Cai. Progress in integrating III–V semiconductors on silicon could drive silicon photonics forward. J. Semicond., 2019, 40(10): 100301. doi: 10.1088/1674-4926/40/10/100301

[19]

Chen Shaowu, Tu Xiaoguang, Yu Hejun, Fan Zhongchao, Xu Xuejun, Yu Jinzhong. Challenges and Solution of Fabrication Techniques for Silicon-Based NanD-Photonics Devices。. J. Semicond., 2007, 28(S1): 568.

[20]

Huang Beiju, Chen Hongda, , Liu Jinbin, Gu Ming. A High-Performance Silicon Electro-Optic Phase Modulator with a Triple MOS Capacitor. J. Semicond., 2006, 27(12): 2089.

Search

Advanced Search >>

GET CITATION

H D Chen, Z Zhang, B J Huang, L H Mao, Z Y Zhang. Progress in complementary metal-oxide-semiconductor silicon photonics and optoelectronic integrated circuits[J]. J. Semicond., 2015, 36(12): 121001. doi: 10.1088/1674-4926/36/12/121001.

Export: BibTex EndNote

Article Metrics

Article views: 2271 Times PDF downloads: 56 Times Cited by: 0 Times

History

Manuscript received: 11 September 2015 Manuscript revised: Online: Published: 01 December 2015

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误