J. Semicond. > Volume 36 > Issue 12 > Article Number: 123002

Properties of n-type SnO2 semiconductor prepared by spray ultrasonic technique for photovoltaic applications

H. Bendjedidi 1, , A. Attaf 1, , H. Saidi 2, , M. S. Aida 1, , S. Semmari 1, , A. Bouhdjar 1, and Y. Benkhetta 1,

+ Author Affilications + Find other works by these authors

PDF

Abstract: ${article.abstractinfo}

Key words: tin oxidethin filmsspray ultrasonicstructural propertiesoptical properties

Abstract: ${article.abstractinfo}

Key words: tin oxidethin filmsspray ultrasonicstructural propertiesoptical properties



References:

[1]

Yang C H, Lee S C, Chen S C. The effect of annealing treatment on microstructure and properties of indium tin oxides films[J]. Mater Sci Eng, 2006.

[2]

Ayeshamariam A, Sanjeeviraja C, Samy R P. Synthesis, structural and optical characterizations of SnO2 nanoparticles[J]. Journal of Photonics and Spintronics, 2013, 2(2): 4.

[3]

Khanaa V, Mohanta K. Synthesis and structural characterization of SnO2 thin films prepared by spray pyrolysis technique[J]. International Journal of Advanced Research, 2013, 1(7): 666.

[4]

Liang Y, Zheng H, Fang B. Synthesis and characterization of SnO with controlled flower like microstructures[J]. Mater Lett, 2013, 108: 235.

[5]

Benouisa C E, Benhalilibaa M, Yakuphanoglub F. Physical properties of ultrasonic sprayed nanosized indium doped SnO2 films[J]. Synthetic Metals, 2011, 161: 1509.

[6]

Jäger T, Bissig B, Döbeli M. Thin films of SnO2:F by reactive magnetron sputtering with rapid thermal post-annealing[J]. Thin Solid Films, 2014, 553: 21.

[7]

Rubinger C P L, Cunha A F, Vinagre F. Microwave shielding of fluorine-doped tin oxide film obtained by spray pyrolysis studied by electrical characterization[J]. J Appl Phys, 2009, 105: 074502.

[8]

Barlþ B. AC conductivity and dielectric spectroscopy studies on tin oxide thin films formed by spray deposition technique[J]. Physica B, 2014, 438: 53.

[9]

Lehrzki N, Aida M S, Abed S. ZnO thin films deposition by spray pyrolysis:influence of precursor solution properties[J]. Current Applied Physics, 2012, 12(5): 1283.

[10]

Rani S, Roy S C, Karar N. Structure, microstructure and photoluminescence properties of Fe doped SnO2 thin films[J]. Solid State Commun, 2007, 141: 214.

[11]

Bhardwaj N, Kuriakose S, Mohapatra S. Structural and optical properties of SnO2 nanotowers and interconnected nanowires prepared by carbothermal reduction method[J]. Journal of Alloys and Compounds, 2014, 592: 238.

[12]

Ren Y, Zhao G, Chen Y. Fabrication of textured SnO2:F thin films by spray pyrolysis[J]. Appl Surf Sci, 2011, 258: 914.

[13]

Sefardjella H, Boudjema B, Kabir A. Characterization of SnO2 obtained from the thermal oxidation of vacuum evaporated Sn thin films[J]. J Phys Chem Solids, 2013, 74: 1686.

[14]

Babar A R, Shinde S S, Moholkarb A V. Electrical and dielectric properties of co-precipitated nanocrystalline tin oxide[J]. Journal of Alloys and Compounds, 2010, 505: 743.

[15]

Babar A R, Shinde S S, Moholkarb A V. Structural and optoelectronic properties of antimony incorporate tin oxide thin films[J]. Journal of Alloys and Compounds, 2010, 505: 416.

[16]

Patil P S, Sadale S B, Mujawar S H. Synthesis of electrochromic tin oxide thin films with faster response by spray pyrolysis[J]. Appl Surf Sci, 2007, 253: 8560.

[17]

Ynineb F, Hafdallah A, Aida M S. Influence of Sn content on properties of ZnO:SnO2 thin films deposited by ultrasonic spray pyrolysis[J]. Materials Science in Semiconductor Processing, 2013, 16: 2021.

[18]

Yang M R, Chu S Y, Chang R C. Synthesis and study of the SnO2 nanowires growth[J]. Sensors and Actuators, 2007.

[19]

Kasar R R, Deshpande N G, Gudage Y G. Studies and correlation among the structural, optical and electrical parameters of spray-deposited tin oxide(SnO2) thin films with different substrate temperatures[J]. Physica B, 2008, 403: 3724.

[20]

Patil G, Kajale D, Chavan D. Synthesis, characterization and gas sensing performance of SnO2 thin films prepared by spray pyrolysis[J]. Bull Mater Sci, 2011, 34(1): 1.

[21]

Miao D, Zhao Q, Wu S. Effect of substrate temperature on the crystal growth orientation of SnO2:F thin films[J]. Journal of Non-Crystalline Solids, 2010, 356: 2557.

[22]

Lin Lingyan, Yu Jinling, Cheng Shuying. Influence of Ag and Sn incorporation in In2S3 thin films[J]. Chin Phys B, 2015, 24(7): 078103.

[23]

Chopra K L, Major S, Pandya D K. Transparent conductors-a status review[J]. Thin Solid Films, 1983, 102: 15.

[24]

Ian Y Y. Effects of the pre-annealing temperature on structural and optical properties of sol-gel deposited aluminum doped zinc oxide[J]. Ceramics International, 2014, 40: 11941.

[25]

Benamar E, Rami M, Messaoudi C. Structural, optical and electrical properties of indium tin oxide thin films prepared by spray pyrolysis[J]. Solar Energy Materials and Solar Cells, 1999, 56: 125.

[26]

Wang C. Enhanced photocatalytic performance of nanosized coupled ZnO/SnO2 photocatalysts for methyl orange degradation[J]. Journal of Photochemistry and Photobiology, 2004, 168: 47.

[27]

Raghupathi P S, George J, Menon C S. Effect of substrate temperature on the electrical and optical properties of reactively evaporated tin oxide thin films[J]. Indian Journal of Pure and Appl Phys, 2005, 43: 622.

[28]

Tatar D, Turgut G, Düzgün B. Effect of substrate temperature on the crystal growth orientation and some physical properties of SnO2:F thin films deposited by spray pyrolysis technique[J]. Rom J Phys, 2013, 58: 143.

[1]

Yang C H, Lee S C, Chen S C. The effect of annealing treatment on microstructure and properties of indium tin oxides films[J]. Mater Sci Eng, 2006.

[2]

Ayeshamariam A, Sanjeeviraja C, Samy R P. Synthesis, structural and optical characterizations of SnO2 nanoparticles[J]. Journal of Photonics and Spintronics, 2013, 2(2): 4.

[3]

Khanaa V, Mohanta K. Synthesis and structural characterization of SnO2 thin films prepared by spray pyrolysis technique[J]. International Journal of Advanced Research, 2013, 1(7): 666.

[4]

Liang Y, Zheng H, Fang B. Synthesis and characterization of SnO with controlled flower like microstructures[J]. Mater Lett, 2013, 108: 235.

[5]

Benouisa C E, Benhalilibaa M, Yakuphanoglub F. Physical properties of ultrasonic sprayed nanosized indium doped SnO2 films[J]. Synthetic Metals, 2011, 161: 1509.

[6]

Jäger T, Bissig B, Döbeli M. Thin films of SnO2:F by reactive magnetron sputtering with rapid thermal post-annealing[J]. Thin Solid Films, 2014, 553: 21.

[7]

Rubinger C P L, Cunha A F, Vinagre F. Microwave shielding of fluorine-doped tin oxide film obtained by spray pyrolysis studied by electrical characterization[J]. J Appl Phys, 2009, 105: 074502.

[8]

Barlþ B. AC conductivity and dielectric spectroscopy studies on tin oxide thin films formed by spray deposition technique[J]. Physica B, 2014, 438: 53.

[9]

Lehrzki N, Aida M S, Abed S. ZnO thin films deposition by spray pyrolysis:influence of precursor solution properties[J]. Current Applied Physics, 2012, 12(5): 1283.

[10]

Rani S, Roy S C, Karar N. Structure, microstructure and photoluminescence properties of Fe doped SnO2 thin films[J]. Solid State Commun, 2007, 141: 214.

[11]

Bhardwaj N, Kuriakose S, Mohapatra S. Structural and optical properties of SnO2 nanotowers and interconnected nanowires prepared by carbothermal reduction method[J]. Journal of Alloys and Compounds, 2014, 592: 238.

[12]

Ren Y, Zhao G, Chen Y. Fabrication of textured SnO2:F thin films by spray pyrolysis[J]. Appl Surf Sci, 2011, 258: 914.

[13]

Sefardjella H, Boudjema B, Kabir A. Characterization of SnO2 obtained from the thermal oxidation of vacuum evaporated Sn thin films[J]. J Phys Chem Solids, 2013, 74: 1686.

[14]

Babar A R, Shinde S S, Moholkarb A V. Electrical and dielectric properties of co-precipitated nanocrystalline tin oxide[J]. Journal of Alloys and Compounds, 2010, 505: 743.

[15]

Babar A R, Shinde S S, Moholkarb A V. Structural and optoelectronic properties of antimony incorporate tin oxide thin films[J]. Journal of Alloys and Compounds, 2010, 505: 416.

[16]

Patil P S, Sadale S B, Mujawar S H. Synthesis of electrochromic tin oxide thin films with faster response by spray pyrolysis[J]. Appl Surf Sci, 2007, 253: 8560.

[17]

Ynineb F, Hafdallah A, Aida M S. Influence of Sn content on properties of ZnO:SnO2 thin films deposited by ultrasonic spray pyrolysis[J]. Materials Science in Semiconductor Processing, 2013, 16: 2021.

[18]

Yang M R, Chu S Y, Chang R C. Synthesis and study of the SnO2 nanowires growth[J]. Sensors and Actuators, 2007.

[19]

Kasar R R, Deshpande N G, Gudage Y G. Studies and correlation among the structural, optical and electrical parameters of spray-deposited tin oxide(SnO2) thin films with different substrate temperatures[J]. Physica B, 2008, 403: 3724.

[20]

Patil G, Kajale D, Chavan D. Synthesis, characterization and gas sensing performance of SnO2 thin films prepared by spray pyrolysis[J]. Bull Mater Sci, 2011, 34(1): 1.

[21]

Miao D, Zhao Q, Wu S. Effect of substrate temperature on the crystal growth orientation of SnO2:F thin films[J]. Journal of Non-Crystalline Solids, 2010, 356: 2557.

[22]

Lin Lingyan, Yu Jinling, Cheng Shuying. Influence of Ag and Sn incorporation in In2S3 thin films[J]. Chin Phys B, 2015, 24(7): 078103.

[23]

Chopra K L, Major S, Pandya D K. Transparent conductors-a status review[J]. Thin Solid Films, 1983, 102: 15.

[24]

Ian Y Y. Effects of the pre-annealing temperature on structural and optical properties of sol-gel deposited aluminum doped zinc oxide[J]. Ceramics International, 2014, 40: 11941.

[25]

Benamar E, Rami M, Messaoudi C. Structural, optical and electrical properties of indium tin oxide thin films prepared by spray pyrolysis[J]. Solar Energy Materials and Solar Cells, 1999, 56: 125.

[26]

Wang C. Enhanced photocatalytic performance of nanosized coupled ZnO/SnO2 photocatalysts for methyl orange degradation[J]. Journal of Photochemistry and Photobiology, 2004, 168: 47.

[27]

Raghupathi P S, George J, Menon C S. Effect of substrate temperature on the electrical and optical properties of reactively evaporated tin oxide thin films[J]. Indian Journal of Pure and Appl Phys, 2005, 43: 622.

[28]

Tatar D, Turgut G, Düzgün B. Effect of substrate temperature on the crystal growth orientation and some physical properties of SnO2:F thin films deposited by spray pyrolysis technique[J]. Rom J Phys, 2013, 58: 143.

[1]

Hongda Chen, Zan Zhang, Beiju Huang, Luhong Mao, Zanyun Zhang. Progress in complementary metal-oxide-semiconductor silicon photonics and optoelectronic integrated circuits. J. Semicond., 2015, 36(12): 121001. doi: 10.1088/1674-4926/36/12/121001

[2]

Xingheng Xia, Weijing Wu, Xiaofeng Song, Guanming Li, Lei Zhou, Lirong Zhang, Miao Xu, Lei Wang, Junbiao Peng. High-speed low-power voltage-programmed driving scheme for AMOLED displays. J. Semicond., 2015, 36(12): 125005. doi: 10.1088/1674-4926/36/12/125005

[3]

Jiao Hong, Yuling Liu, Baoguo Zhang, Xinhuan Niu, Liying Han. A new kind of chelating agent with low pH value applied in the TSV CMP slurry. J. Semicond., 2015, 36(12): 126001. doi: 10.1088/1674-4926/36/12/126001

[4]

Rongrui Liu, Yubing Wang, Dongdong Yin, Han Ye, Xiaohong Yang, Qin Han. A high-efficiency grating coupler between single-mode fiber and silicon-on-insulator waveguide. J. Semicond., 2017, 38(5): 054007. doi: 10.1088/1674-4926/38/5/054007

[5]

Qin Ge, Hongqi Tao, Xuming Yu. A 1.8-3 GHz-band high efficiency GaAs pHEMT power amplifier MMIC. J. Semicond., 2015, 36(12): 125003. doi: 10.1088/1674-4926/36/12/125003

[6]

Ke Liu, Zhankun Du, Li Shao, Xiao Ma. A trimming technique for capacitive SAR ADC as sensor interface. J. Semicond., 2015, 36(12): 125004. doi: 10.1088/1674-4926/36/12/125004

[7]

Shaohua Jia, Yuling Liu, Chenwei Wang, Chenqi Yan. Influence of oxidant passivation on controlling dishing in alkaline chemical mechanical planarization. J. Semicond., 2015, 36(12): 126002. doi: 10.1088/1674-4926/36/12/126002

[8]

Zhao Yong, Wang Wanjun, Shao Haifeng, Yang Jianyi, Wang Minghua, Jiang Xiaoqing. Influence of doping position on the extinction ratio of Mach-Zehnder-interference based silicon optical modulators. J. Semicond., 2012, 33(1): 014009. doi: 10.1088/1674-4926/33/1/014009

[9]

Shujie Pan, Victoria Cao, Mengya Liao, Ying Lu, Zizhuo Liu, Mingchu Tang, Siming Chen, Alwyn Seeds, Huiyun Liu. Recent progress in epitaxial growth of III–V quantum-dot lasers on silicon substrate. J. Semicond., 2019, 40(10): 101302. doi: 10.1088/1674-4926/40/10/101302

[10]

Yunchou Zhao, Hao Jia, Jianfeng Ding, Lei Zhang, Xin Fu, Lin Yang. Five-port silicon optical router based on Mach-Zehnder optical switches for photonic networks-on-chip. J. Semicond., 2016, 37(11): 114008. doi: 10.1088/1674-4926/37/11/114008

[11]

Xuhan Guo, An He, Yikai Su. Recent advances of heterogeneously integrated III–V laser on Si. J. Semicond., 2019, 40(10): 101304. doi: 10.1088/1674-4926/40/10/101304

[12]

Yu Zhou, Xinxing Li, Renbing Tan, Wei Xue, Yongdan Huang, Shitao Lou, Baoshun Zhang, Hua Qin. Extraction of terahertz emission from a grating-coupled high-electron-mobility transistor. J. Semicond., 2013, 34(2): 022002. doi: 10.1088/1674-4926/34/2/022002

[13]

Xiaoxin Wang, Jifeng Liu. Emerging technologies in Si active photonics. J. Semicond., 2018, 39(6): 061001. doi: 10.1088/1674-4926/39/6/061001

[14]

Chen Yuan, Jincheng Dai, Hao Jia, Jianfeng Ding, Lei Zhang, Xin Fu, Lin Yang. Design of a C-band polarization rotator-splitter based on a mode-evolution structure and an asymmetric directional coupler. J. Semicond., 2018, 39(12): 124008. doi: 10.1088/1674-4926/39/12/124008

[15]

Xiaogang Tong, Jun Liu, Chenyang Xue. High-Q micro-ring resonators and grating couplers for silicon-on-insulator integrated photonic circuits. J. Semicond., 2013, 34(8): 085006. doi: 10.1088/1674-4926/34/8/085006

[16]

Wenqi Wei, Qi Feng, Zihao Wang, Ting Wang, Jianjun Zhang. Perspective: optically-pumped III–V quantum dot microcavity lasers via CMOS compatible patterned Si (001) substrates. J. Semicond., 2019, 40(10): 101303. doi: 10.1088/1674-4926/40/10/101303

[17]

Xinlun Cai. Progress in integrating III–V semiconductors on silicon could drive silicon photonics forward. J. Semicond., 2019, 40(10): 100301. doi: 10.1088/1674-4926/40/10/100301

[18]

Chen Shaowu, Tu Xiaoguang, Yu Hejun, Fan Zhongchao, Xu Xuejun, Yu Jinzhong. Challenges and Solution of Fabrication Techniques for Silicon-Based NanD-Photonics Devices。. J. Semicond., 2007, 28(S1): 568.

[19]

Huang Beiju, Chen Hongda, , Liu Jinbin, Gu Ming. A High-Performance Silicon Electro-Optic Phase Modulator with a Triple MOS Capacitor. J. Semicond., 2006, 27(12): 2089.

[20]

Chen Hongtao, Ding Jianfeng, Yang Lin. 12.5 Gb/s carrier-injection silicon Mach-Zehnder optical modulator. J. Semicond., 2012, 33(11): 114005. doi: 10.1088/1674-4926/33/11/114005

Search

Advanced Search >>

GET CITATION

H. Bendjedidi, A. Attaf, H. Saidi, M. S. Aida, S. Semmari, A. Bouhdjar, Y. Benkhetta. Properties of n-type SnO2 semiconductor prepared by spray ultrasonic technique for photovoltaic applications[J]. J. Semicond., 2015, 36(12): 123002. doi: 10.1088/1674-4926/36/12/123002.

Export: BibTex EndNote

Article Metrics

Article views: 1026 Times PDF downloads: 12 Times Cited by: 0 Times

History

Manuscript received: 19 April 2014 Manuscript revised: Online: Published: 01 December 2015

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误